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a b s t r a c t

The variational asymptotic method is used to construct a new model for composite plates which could
have in-plane heterogeneity due to both geometry and material. We first formulate the original three-
dimensional problem in an intrinsic form which is suitable for geometrically nonlinear analysis. Taking
advantage of smallness of the plate thickness and heterogeneity, we use the variational asymptotic
method to rigorously construct an effective plate model unifying a homogenization process and a dimen-
sional reduction process. This approach is implemented in the computer code VAPAS using the finite ele-
ment technique for the purpose of dealing with realistic heterogeneous plates. A few examples are used
to demonstrate the capability of this new model.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Along with the rapidly increasing popularity of composite
materials and structures, research on accurate and general model-
ing of structures made of them has remained as a very active field
in the last several decades. Moreover the increased knowledge and
fabrication techniques of them are possible to manufacture new
materials and structures with optimized microstructures to
achieve the ever-increasing performance requirements. Although
it is logically sound to use the well-established finite element anal-
ysis (FEA) to analyze such materials and structures by meshing all
the details of constituent microstructures, it is not a practical and
efficient way, which requires an inordinate number of degrees of
freedom (i.e., computing cost) to capture the micro-scale behavior.

Fortunately, most composite materials exhibit statistical homo-
geneity (Hashin, 1983) so that we can define a representative vol-
ume element (RVE), which is entirely typical of the whole mixture
on average and contains a sufficient number of inclusions for the
apparent overall properties to be effectively independent of the
boundary conditions (Hill, 1963). Although different definitions
are given for an RVE in the literature (Nemat-Nasser and Hori,
1993), we give a practice-oriented definition for an RVE as any
block of material the analyst wants to use for the micromechanical
analysis to find the effective properties and replace it with an
equivalent homogeneous material. The term unit cell (UC) is also
used extensively in the literature and defined as the building block
of the heterogeneous material. In our work, we define UC as the

smallest RVE. In other words, one RVE could contain several UCs.
These definitions essentially imply that it is the analyst’s judge-
ment to determine what should be contained in an RVE or UC. To
be consistent with statistical homogeneity, a well-formulated
micromechanics model should not depend on the size of an RVE,
which means the effective properties obtained from an RVE con-
taining multiple UCs should be the same as those obtained from
a UC. In this sense, we consider the heterogeneous structure as a
periodic assembly of many UCs.

If the size of UC (d) is much smaller than the size of the struc-
ture (L) (i.e., g = d/L� 1), it is possible to homogenize the heter-
ogeneous UC with a set of effective material properties through
a micromechanical analysis of the UC. With these effective prop-
erties, the analyst can replace the original heterogeneous struc-
ture with a homogeneous one and carry out structural analysis
for global behavior. In the past several decades, numerous micro-
mechanical approaches have been suggested in the literature,
such as the self-consistent model (Hill, 1965; Dvorak and Bahei-
El-Din, 1979; Accorsi and Nemat-Nasser, 1986), the variational
approach (Hashin and Shtrikman, 1962; Milton, 2001), the meth-
od of cells (Aboudi, 1982, 1989; Paley and Aboudi, 1992; Wil-
liams, 2005), recursive cell method (Banerjee and Adams, 2004),
mathematical homogenization theories (Bensoussan et al., 1978;
Sanchez-Palencia, 1980; Murakami and Toledano, 1990), finite
element approaches using conventional stress analysis of a repre-
sentative volume element (Sun and Vaidya, 1996), variational
asymptotic method for unit cell homogenization (VAMUCH) (Yu,
2005; Yu and Tang, 2007), and many others (see, e.g. Hollister
and Kikuchi (1992), Kalamkarov et al. (2009), Kanouté et al.
(2009) for a review).
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In real applications, many composite structures are dimension-
ally reducible structures (Yu, 2002) with one or two dimensions
much smaller than others. For example, many load bearing compo-
nents are flat panels with the thickness h much smaller than the in-
plane dimensions (i.e., e = h/L� 1) and they can be effectively
modeled using plate models. If there are still many unit cells along
the thickness direction (i.e., g� e), we can use the traditional two-
step approach that performs homogenization using micromechan-
ics first to obtain effective properties of the heterogeneous mate-
rial, then performs a dimensional reduction to construct a plate
model for structural analysis. Usually, composite plates do not
have many unit cells along the thickness direction. For example,
for plates made of textiles, the textile microstructure might be as
large as the plate thickness. That is, the periodicity is exhibited
only in-plane and we have either e� g or e � g. As pointed out
by Kohn and Vogelius (1984), if e� g, the order of the aforemen-
tioned two-step approach should be reversed. That is, we need to
carry out the dimensional reduction to construct plate models first,
then homogenize the heterogeneous surface with periodically
varying plate properties. If e � g, the two steps in the two-step ap-
proach should be performed at the same time, that is, both small
parameters (e and g) should be considered during modeling of
such structures. And several studies have shown that models con-
sidering e and g simultaneously also give accurate results for the
case e� g (Lewiński, 1991; Buannic and Cartraud, 2001).

In recent years, the formal asymptotic method has been used to
study this problem (Caillerie, 1984; Kohn and Vogelius, 1984; Le-
wiński, 1991; Kalamkarov, 1992; Kalamkarov and Kolpakov,
1997). It is a modification to the asymptotic homogenization meth-
od which is a direct application of the formalism of two scales to
the original three-dimensional (3D) equations governing the plate
structure. However, although these models are mathematically
elegant and rigorous without introducing ad hoc assumptions, it
is not easy to relate the equations derived using this method with
simple engineering models and extend this approach to geometri-
cal nonlinear problems. Sometimes, the displacement field pre-
dicted using this approach is not compatible with the stress field.
For example, the displacement field in Eqs. (1.3.5) of Kalamkarov
and Kolpakov (1997) implies zero transverse normal strain which
further implies nonzero normal stress due to Poisson’s effect,
which is not compatible with the stress field given in Eq. (1.3.6)
of Kalamkarov and Kolpakov (1997). Last but not least, it is difficult
to implement these theories numerically.

As a remedy to the shortcomings of formal asymptotic method,
we propose to use the variational asymptotic method (VAM)
(Berdichevsky, 1979) to carry out simultaneous homogenization
and dimensional reduction to construct a model suitable for plates

made of heterogeneous materials. First, the 3D anisotropic elastic-
ity problem is formulated in an intrinsic form suitable for geomet-
rically nonlinear analysis. Then, considering both e and g, we use
VAM to rigorously decouple the original 3D anisotropic, heteroge-
neous problem into a nonlinear two-dimensional (2D) surface
analysis (i.e., plate analysis) on the macroscopic level and a linear
micromechanical analysis. The micromechanical analysis is imple-
mented in the computer code VAPAS (Variational Asymptotic Plate
and Shell analysis) using the finite element technique for numeri-
cally obtaining the effective plate constants for the 2D plate anal-
ysis and recovering the local displacement, strain, and stress
fields based on the macroscopic behavior. Several examples are
used to demonstrate the application and accuracy of this new
model and the companion code VAPAS.

2. Three-dimensional formulation

A plate may be considered geometrically as a smooth 2D ref-
erence plane x surrounded by a layer of matter with thickness
h to form a 3D body with one dimension much smaller than
the other two. In general, a point in the plate can be represented
mathematically by its Cartesian coordinates xi, where xa are two
orthogonal lines in the reference plane and x3 is the normal coor-
dinates. (Here and throughout the paper, Greek indices assume
values 1 and 2 while Latin indices assume 1, 2, and 3. Repeated
indices are summed over their range except where explicitly indi-
cated.) Without loss of generality, we choose the middle of the
plate as the origin of x3. Let us now consider an heterogeneous
plate formed by many UCs (X) in the reference plane (see
Fig. 1). To describe the rapid change in the material characteris-
tics in the in-plane directions, we need to introduce two so-called
‘fast’ coordinates ya parallel to xa. These two sets of coordinates
are related as ya = xa/g.

If the UC is a cuboid as depicted in Fig. 1, we can describe the
domain (X) occupied by the UC using ya and x3 as

X ¼ ðy1; y2; x3Þ �
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As our goal is to homogenize the heterogenous material, we need to
assume that the exact solution of the field variables have volume
averages over X. For example, if ui(x1,x2,x3;y1,y2) are the exact dis-
placements within the UC, there exists vi(x1,x2) such that

v i ¼
1
X

Z
y1

Z
y2

Z
x3

ui dy1 dy2 dx3 ¼
1
X

Z
X

ui dX � uih i ð2Þ

Fig. 1. A heterogeneous plate with representative periodicity cell.
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