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a b s t r a c t

The paper establishes tight lower bound for effective conductivity tensor K⁄ of two-dimensional three-
phase conducting anisotropic composites and defines optimal microstructures. It is assumed that three
materials are mixed with fixed volume fractions and that the conductivity of one of the materials is infi-
nite. The bound expands the Hashin–Shtrikman and translation bounds to multiphase structures, it is
derived using a combination of translation method and additional inequalities on the fields in the mate-
rials; similar technique was used by Nesi (1995) and Cherkaev (2009) for isotropic multiphase compos-
ites. This paper expands the bounds to the anisotropic composites with effective conductivity tensor K⁄.
The lower bound of conductivity (G-closure) is a piece-wise analytic function of eigenvalues of K⁄, that
depends only on conductivities of components and their volume fractions. Also, we find optimal micro-
structures that realize the bounds, developing the technique suggested earlier by Albin et al. (2007a) and
Cherkaev (2009). The optimal microstructures are laminates of some rank for all regions. The found struc-
tures match the bounds in all but one region of parameters; we discuss the reason for the gap and numer-
ically estimate it.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The problem. The paper investigates the lower bound for effec-
tive conductivity and optimal micro-geometries of three-material
composites (plane problem). We assume that two mixing isotropic
materials have finite conductivities k1 and k2 (0 < k1 < k2) and the
third one is a superconductor k3 =1, the volume fractions
m1 P 0, m2 P 0 and m3 = 1 �m1 �m2 P 0 of the materials are
fixed. The conductivity of a composite is characterized by an aniso-
tropic effective conductivity tensor K⁄ that depends on the proper-
ties of mixed materials and their volume fractions, as well as on
microstructures. We describe the bounds of G-closure (Lurie and
Cherkaev, 1981) – the set of all effective properties of composites
with arbitrary microstructure. The G-closure boundary depends
only on k1, k2, m1, and m2. Optimal microstructures realize the
bound if their effective conductivity lies at the G-closure boundary.

We find the bound solving a variational problem of minimiza-
tion of K⁄ with respect to microstructures (Section 2). Namely,
we apply two orthogonal external fields of different magnitudes
to a periodic composite and minimize the sum J of the correspond-
ing energies of the composite, varying the microstructure occupy-
ing the periodicity cell X. The computed value of J allows for
computation of the add outer bound of G-closure, as discussed in

Sections 2.2 and 2.3. The matching microstructures (minimizing
sequences) are found by a different technique that was introduces
in Albin et al. (2007a) and Cherkaev (2009) and is described in Sec-
tions 3.3 and 6; by assumption, optimal structures are laminates of
some rank. The effective properties of the structures form the inner
bound of G-closure. When the outer and inner bounds coincide,
they are exact and the G-closure is determined. We show that
our bounds are exact in all domains of parameters but one. In
the last domain, we estimate the gap between the outer and inner
bounds.

Remark 1.1. The complementary upper bound can be established
by a solution of a dual problem, in which conductivity ki are
replaced by resistivity qi = 1/ki. In the considered problem, one of
the component is a superconductor (k3 =1) which makes the dual
bound trivial - the effective resistivity can be arbitrary large, or
K�1
� P 0. The obtained results allows for the upper bound deter-

mination for the G-closure of materials with conductivities
k1 = 0 < k2 < k3 <1.

Bounds. The problem of exact bounds has a long history. It
started with the bounds by Voigt (1928) and Reuss (1929), called
also Wiener bounds or the arithmetic and harmonic mean bounds.
The bounds are valid for all microstructures and become in a sense
exact for laminates: One of the eigenvalues of K⁄ of a laminate is
equal to the harmonic mean of the mixed materials’ conductivities,
and the other one – to the arithmetic mean of them. The pioneering
paper by Hashin and Shtrikman (1963) found the bounds and the
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matching structures for optimal isotropic two-component compos-
ites, and suggested bounds for multicomponent ones. The exact
bounds and optimal structures of anisotropic two-material com-
posites were found in earlier papers (Lurie and Cherkaev, 1982,
1986; Kohn and Strang, 1983, 1986; Tartar, 1985) using a version
of the translation method (see its description in books (Cherkaev,
2000; Allaire, 2001; Milton, 2002; Dacorogna, 2008)). The method
is equivalent to building the polyconvex envelope of a multiwell
Lagrangian, as it was shown by Kohn and Strang (1983, 1986);
the wells are the energy of the materials plus their cost (here,
‘‘cost’’ is the dual variable to the volume fraction of material in
the composite). The theory of bounds for the two-material com-
posite is now well developed and applied to elastic, viscoelastic,
and other linear materials, see for example the books (Lurie,
1993; Cherkaev, 2000; Allaire, 2001; Milton, 2002; Dacorogna,
2008).

Bounds for multicomponent composites turn out to be much
more difficult. Milton (1981) showed that the Hashin–Shtrikman
bound is not exact everywhere (it tends to an incorrect limit when
m1 ? 0), but is exact when m1 is larger than a threshold, m1 P gm.
Milton and Kohn (1988) suggested an extension of the translation
method to anisotropic multimaterial composites, computed the
anisotropic bounds for multicomponent composites and the opti-
mal structures. Nesi (1995) suggested a new tighter bound for iso-
tropic multicomponent structures, and (Cherkaev, 2009) further
improved it and found optimal structures. The method is based
on the procedure suggested by Nesi (1995) that combines the
translation method and additional inequality constraints (Ales-
sandrini and Nesi, 2001). These two latest bounds coincide in the
case k3 =1 that is considered here.

This paper extends these bounds to anisotropic composites. As
in the early paper by Kohn and Strang (1983), we investigate the
case when one of the phase has infinite conductivity, which signif-
icantly simplifies the calculation. The method is based on con-
structing a lower bound for the composite energy accounting for
Alessandrini and Nesi (2001) constraints. Because of the con-
straints, the translated energies-wells can become nonconvex but
are still bounded from below, an improved bound corresponds to
this case. The method is described in Section 3, the results are sum-
marized in Section 4. The energy bound turns out to be a multi-
faced piece-wise analytic function of the problem’s parameters.
Like the translation bound, it depends only on conductivities of
the materials, their volume fractions, and the anisotropy of a
homogeneous external loading. The energy bounds and related
bounds for the G-closure are derived in Section 5.

Optimal structures. In the paper, we prove that multiscale lam-
inates realize the G-closure bound. Similar structures – laminates of
second rank – realize the G-closure bound for the two-material case
(Lurie and Cherkaev, 1982, 1986); three-material bound is achiev-
able by more complex structures of the same kind. Optimal struc-
tures depend on the degree of anisotropy of the external loading.

Remark 1.2. Generally, optimal structures are not necessary
laminates: for example, Hashin and Shtrikman (1963) first sug-
gested ‘‘coated spheres’’ geometry, Milton (1981) introduced
parallel coated spheres and later suggested (Milton, 2002) a
method of transformation of optimal shapes, (Lurie and Cherkaev,
1985) suggested multilayer coated circles, Vigdergauz (1989) and
Grabovsky and Kohn (1995) and recently (Liu, 2008) suggested
special convex oval-shaped inclusions, Gibiansky and Sigmund
(2000) suggested ‘‘bulk blocks’’, Albin and Cherkaev (2006) proved
the optimality of ‘‘haired spheres’’, and recent paper by Benveniste
and Milton (2003) investigated ‘‘coated ellipsoids’’. All these
structures admit separation of variables when effective properties
are computed. It is not clear yet if the laminate structure
approximates any other optimal structure, see for example

Pedregal (1997), Briane and Nesi (2004) and Albin et al. (2007b).
We show, however, that proper laminates are optimal for the
considered problem.

The topology of two-material optimal structures is simple and
intuitively clear: for an isotropic or moderately anisotropic loading,
the less conducting material k1 ‘‘wraps’’ the more conducting one
k2 (k2 > k1), so that k2 forms an nucleus and k1 forms a core. If
the anisotropy of the loading exceeds a threshold, the optimal
structures degenerate into simple laminates.

The multimaterial structures are more diverse and nonunique
and require new ideas for constructing. Milton (1981), Lurie and
Cherkaev (1985) and later Barbarosie (2001) described two types
of isotropic structures that realize the multicomponent bound for
sufficiently large volume fractions m1 P gm of the weaker conduc-
tor k1 < k2 < � � � Later, Sigmund (2000) and Gibiansky and Sigmund
(2000) expand the domain of applicability of Hashin–Shtrikman
bounds to m1 P ggs where the threshold ggs is smaller than the
one previously known ggs < gm. They demonstrated new isotropic
non-laminate microstructures (bulk structures) that realize this
bound. Liu (2008) found another structures an optimal conductiv-
ity. Albin et al. (2007a) extended the results of Gibiansky and
Sigmund (2000)) finding anisotropic laminates that realize
translation bounds for both isotropic and anisotropic structures
in a range of parameters

m1 P gacn; and
jk�2 � k�1j
k�1 þ k�2

6 ĝacn;

where k⁄1 and k⁄2 are eigenvalues of K⁄. These inequalities restrict
the range of volume fractions and degree of anisotropy of a compos-
ite that correspond to translation bounds. For isotropic composites
(k⁄1 = k⁄2), the range of applicability of the founded laminates coin-
cides with the one of bulk structures founded by Gibiansky and
Sigmund (2000). Structures that realize the isotropic bound for
the whole range of volume fractions were found in Cherkaev (2009).

In Section 6 we extent this result to anisotropic composites,
finding new optimal structures that realize our new bounds. More
exactly, we show that optimal laminates realize the bounds in all
but one region. The topology of optimal structures depends on vol-
ume fractions of the mixing elements and loading anisotropy level.
The structure adjusts itself to meet the sufficient optimality condi-
tions that are found during derivation of the bounds. All the opti-
mal microstructures are found by the same procedure suggested
in Albin et al. (2007a) and based on (i) the energy bounds and suf-
ficient optimality conditions for gradient fields inside each mate-
rial, and (ii) the lamination technique that allows for satisfaction
of these conditions. In all cases but one, the found laminate achieve
the bounds, they are not unique.

In the remaining case, the lower bound for G-closure is defi-
nitely not exact, hence the mentioned technique for building the
structures is not applicable. In that case, we guess the best struc-
tures (that correspond to the upper bound of G-closure) basing
on asymptotic behavior of optimal structures in neighboring re-
gions and then numerically compute the gap between the struc-
tures and bound that is between the upper and lower bounds for
G-closure). The gap is very small, see Section 6.4, which shows that
the suggested laminates (upper bound) and the lower bound accu-
rately approximate G-closure.

2. The problem

2.1. Equations and notations

Consider a periodic composite formed by three materials. The
materials ki occupy plane domains Xi, i = 1,2,3 � R2 that form a
unit periodicity cell X
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