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a b s t r a c t

This is the first part of a two-part paper dedicated to a new plate theory for out-of-plane loaded thick
plates where the static unknowns are those of the Kirchhoff–Love theory (3 in-plane stresses and 3 bend-
ing moments), to which six components are added representing the gradient of the bending moment. The
new theory, called the Bending-Gradient plate theory is described in the present paper. It is an extension
to arbitrarily layered plates of the Reissner–Mindlin plate theory which appears as a special case of the
Bending-Gradient plate theory when the plate is homogeneous. However, we demonstrate also that, in
the general case, the Bending-Gradient model cannot be reduced to a Reissner–Mindlin model. In part
two (Lebée and Sab, 2011), the Bending-Gradient theory is applied to multilayered plates and its predic-
tions are compared to those of the Reissner–Mindlin theory and to full 3D Pagano’s exact solutions. The
main conclusion of the second part is that the Bending-Gradient gives good predictions of both deflection
and shear stress distributions in any material configuration. Moreover, under some symmetry conditions,
the Bending-Gradient model coincides with the second-order approximation of the exact solution as the
slenderness ratio L/h goes to infinity.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Laminated composite plates are widely used in engineering
applications, especially in aeronautics. They offer excellent stiff-
ness and strength performance for a low density. However, as fiber
reinforced composites are very anisotropic materials, the overall
plate properties of these laminates has been really difficult to cap-
ture. Because of a strong demand from industry for reliable models,
many suggestions have been made.

Let us recall some essential requirements for such a model. The
main goal is to simplify a computationally heavy 3D model into a
2D plate model without losing local 3D fields’ accuracy. One would
expect:

1. Good estimation of macroscopic deflection,
2. No limitation on local material symmetries,
3. A plate theory which is easy to implement with standard finite

element tools,
4. Good relocalization of 3D fields in order to estimate local

stresses.

The simplest and most widely-used theory is the Kirchhoff–
Love plate model. This model is easy to implement and gives good
estimates for in-plane stress components (far from the edges of the

plate) and neglects the contribution of out-of-plane stress compo-
nents to the stress energy. However, when the plate slenderness
ratio L/h (h is the plate thickness and L the span) is not large en-
ough, out-of-plane stresses have an increasing influence on the
plate deflection. This phenomenon becomes sensitive when L/
h < 10 for an isotropic plate and L/h < 40 for classical carbon fiber
reinforced laminated plates and cannot be neglected for conven-
tional use of composite laminates.

In recent decades many suggestions have been made to im-
prove both deflection estimation and field localization for highly
heterogeneous laminates. Reddy (1989), Noor and Malik (2000),
and Carrera (2002) provided detailed reviews for these models.
Two main approaches can be found: asymptotic approaches and
axiomatic approaches. The first one is mainly based on the fact that
h/L is a small parameter. Using asymptotic expansions in the small
parameter h/L (Caillerie, 1984; Lewinski, 1991a,b,c), it is found that
the Kirchhoff–Love kinematic is actually the first order of the
expansion. However, higher-order terms yield only intricated
‘‘Kirchhoff–Love’’ plate equations and no simple model to imple-
ment. This difficulty is illustrated in Boutin (1996) for 3D periodic
composites and in Buannic and Cartraud (2001a,b) for periodic
beams. Another asymptotic method is based on the so-called Var-
iational Asymptotic Method (VAM) applied to plates by Yu et al.
(2002a,b). The strength of this approach is that it does not make
more assumption than having h/L small and, according to its
authors, it could be applied also to any non-linearities. However,
this method does not seem simple to implement in conventional
finite element code.
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The second main approach is based on assuming ad hoc dis-
placement or stress 3D fields and often referred to as axiomatic ap-
proach. One of the assets of these approaches is that they seem
easier to implement in finite element codes. These models can be
‘‘Equivalent Single Layer’’ or ‘‘Layerwise’’.

Equivalent Single Layer models treat the whole laminate as an
equivalent homogeneous plate. Stress or displacement approaches
have been suggested. Reissner (1945) was the first one who sug-
gested a stress approach for homogeneous and isotropic plates.
His approach will be detailed further in the present work. Reiss-
ner’s transverse shear stress field is a parabolic distribution
through the thickness. However, experiments and some exact solu-
tions (Pagano, 1969, 1970a,b) when considering composite lami-
nates, revealed that shear stress distributions are much more
distorted than that. At the same time, numerous displacement ap-
proaches were suggested. The roughest suggestion for taking into
account transverse shear strains, ea3, is assuming that ea3 is uni-
form through the thickness (First Order Shear Deformation The-
ory). Yet, it leads to too stiff shear behavior and necessitates the
introduction of shear correction factors (Mindlin, 1951; Whitney,
1972). Above all, this assumption enforces a discontinuous shear
stress ra3 through the thickness. Other models have been designed
(Reddy, 1984; Touratier, 1991; Vidal and Polit, 2008) to remove the
use of shear correction factors, but most of them did not lead to
continuous ra3, as indicated by Reddy (1989). The most refined
Equivalent Single Layers models, which finally led to continuous
shear stress are zigzag models (Ambartsumian, 1969; Whitney,
1969; Carrera, 2003). However, these models are restricted to
some specific configurations (symmetry of the plate and material
constitutive equation) and involve higher-order partial derivative
equations than the simple Reissner–Mindlin plate model.

The difficulties encountered with transverse stress fields insti-
gated the consideration of enriched models: Layerwise models. In
these models, all plate degrees of freedom are introduced in each
layer of the laminate. Continuity conditions are enforced between
layers. In this area, most of the improvements have been focused
on refining the local displacement field. The reader can refer to
Reddy (1989) and Carrera (2002) for detailed reviews. It should
be noted that a static approach has also been considered for layer-
wise models. Based on the variational formulation from Pagano
(1978), it treats each layer as a Reissner–Mindlin plate and en-
forces stress continuity conditions (Naciri et al., 1998; Diaz Diaz
et al., 2001, 2007; Hadj-Ahmed et al., 2001; Caron et al., 2006; Dal-
lot and Sab, 2008). Both stress and displacement approaches for
Layerwise models lead to correct estimates of local 3D fields. How-
ever their main drawback is that they involve many more degrees
of freedom (proportional to the number of layers) than Equivalent
Single Layer models.

Based on Reissner (1945) paper, the purpose of this work is to
suggest an Equivalent Single Layer higher-order plate theory which
gives an accurate enough estimate of transverse shear stresses in
the linear elasticity framework. For this, we are motivated by
two observations. The first one is that Kirchhoff–Love strain fields
have clearly been identified as good first-order approximation for
slender plates thanks to asymptotic expansion approaches. Thus,
it would be inconsistent to refine in-plane fields further without
introducing correct estimation of transverse fields. The second
one is that the 3D equilibrium plays a critical role in the estimation
of transverse shear stress in all the existing approaches. For in-
stance, Whitney (1972) introduced 3D equilibrium in order to
compute shear correction factors and more recently, when bench-
marking several plate models, Noor and Malik (2000) used the 3D
equilibrium to estimate shear stresses. We show in this paper that
revisiting the use of 3D equilibrium in order to derive transverse
shear stress as Reissner (1945) did for homogeneous plates leads
to a full Bending Gradient plate theory. The Reissner–Mindlin the-

ory will appear as a special case of the new Bending-Gradient the-
ory when the plate is homogeneous.

The paper is organized as follows. In Section 2 notations are
introduced. In Section 3 we recall briefly the full 3D elastic problem
for a clamped plate and, in Section 4, how it is possible to derive
plate equilibrium equations without any assumption on micro-
scopic fields and how Reissner derived his shear stress distribution.
Then we demonstrate in Section 5.1.1 that applying Reissner’s ap-
proach for deriving transverse shear stress to a composite laminate
involves more static shear degrees of freedom (DOF) than the usual
shear forces Q. The mechanical meaning of these new DOF is pre-
sented and compatible fields are identified in Section 5.2. The con-
stitutive equation for the Bending Gradient is derived in Section 5.3
which leads to the formulation of a complete plate theory. Finally,
in Section 6, it is demonstrated that for the special case of homoge-
neous plates, the Reissner–Mindlin and the Bending-Gradient plate
theory are identical. Thus a means to quantitatively compare both
theories is provided and applied to conventional laminates.

2. Notations

Vectors and higher-order tensors are boldfaced and different
typefaces are used for each order: vectors are slanted: T, u. Second
order tensors are sans serif: M, e. Third order tensors are in type-
writer style: , . Fourth order tensors are in calligraphic style
D; c. Sixth order tensors are double stroked , .

When dealing with plates, both 2-dimensional (2D) and 3D ten-
sors are used. Thus, eT denotes a 3D vector and T denotes a 2D vec-
tor or the in-plane part of eT . The same notation is used for higher-
order tensors: ~r is the 3D second-order stress tensor while r is its
in-plane part. When dealing with tensor components, the indexes
specify the dimension: aij denotes the 3D tensor ~a with Latin index
i, j, k.. = 1,2,3 and aab denotes the 2D tensor a with Greek indexes a,
b, c.. = 1,2. eC ¼ Cijkl is the fourth-order 3D elasticity stiffness tensor.eS ¼ Sijkl ¼ eC�1 is the fourth-order 3D elasticity compliance tensor
while c ¼ cabcd denotes the plane-stress elasticity tensor. c is not
the in-plane part of eC but it is the inverse of the in-plane part ofeS : c ¼ S�1. The identity for in-plane elasticity is
iabcd ¼ 1

2 dacdbd þ daddbc
� �

, where dab is Kronecker symbol (dab = 1 if
a = b, dab = 0 otherwise).

The transpose operation t� is applied to any order tensors as fol-
lows: (tA)ab. . .wx = Axw. . .ba.

Three contraction products are defined, the usual dot product
ð~a � ~b ¼ aibiÞ, the double contraction product ð~a : ~b ¼ aijbjiÞ and a
triple contraction product (A)B = AabcBcba). Einstein’s notation on
repeated indexes is used in these definitions. It should be noticed
that closest indexes are summed together in contraction products.
Thus, � n = abcnc is different from n � = na abc. The reader might
easily check that i : i ¼ i; i)i ¼ 3=2d and that i � i ¼ iabcdid�fg is a
sixth-order tensor. We recall also that resp. a � b, ta : b and ta)b

define inner products and associated norms on 2; ð 2Þ2 and
ð 2Þ3, respectively.

The derivation operator ~$ is also formally represented as a vec-
tor: ~a � ~$ ¼ aijrj ¼ aij;j is the divergence and a� $ ¼ aabrc ¼ aab;c is
the gradient. Here � is the dyadic product.

Finally, the integration through the thickness is noted
h�i :

R h
2

�h
2

f ðx3Þdx3 ¼ hf i.

3. The 3D model

We consider a linear elastic plate of thickness h occupying the 3D
domain X = x�] � h/2,h/2[, where x � R2 is the mid-plane of the
plate (Fig. 1). Cartesian coordinates (x1,x2,x3) in the reference frame
~e1; ~e2; ~e3ð Þ are used. The constitutive material is assumed to be

invariant with respect to translations in the (x1,x2) plane. Hence,
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