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a b s t r a c t

Anisotropic damage evolution laws for ductile and brittle materials have been coupled to a microme-
chanical model for the prediction of the behavior of composite materials. As a result, it is possible to
investigate the effect of anisotropic progressive damage on the macroscopic (global) response and the
local spatial field distributions of ductile and brittle matrix composites. Two types of thermoinelastic
micromechanics analyses have been employed. In the first one, a one-way thermomechanical coupling
in the constituents is considered according to which the thermal field affects the mechanical deforma-
tions. In the second one, a full thermomechanical coupling exists such that there is a mutual interaction
between the mechanical and thermal fields via the energy equations of the constituents. Results are pre-
sented that illustrate the effect of anisotropic progressive damage in the ductile and brittle matrix phases
on the composite’s behavior by comparisons with the corresponding isotropic damage law and/or by
tracking the components of the damage tensor.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In the most general formulation of the continuum damage
mechanics, the damage state should be represented by a fourth-
order tensor. Such a formulation however would be too difficult
and not necessary, Voyiadjis and Kattan (2005) and Lemaitre and
Desmorat (2005). Theories with scalar damage variables are the
easiest to handle. Anisotropic damage theories are based on sec-
ond-order damage state representations. Discussions and presen-
tations of continuum damage mechanics and the various
formulations of the damage states and their evolution laws can
be found in the books by Kachanov (1986), Lemaitre and Chaboche
(1990), Krajcinovic (1996), Lemaitre (1996), Voyiadjis and Kattan
(2005), and Lemaitre and Desmorat (2005), for example. Applica-
tions of continuum damage mechanics theories on composites
materials are given by Talreja (1985a,b, 1994), Voyiadjis and Delik-
tas (1997) Voyiadjis and Kattan (1999), Skrzypek and Ganczarski
(1999), Barbero (2008), Haj-Ali (2009), Bednarcyk et al. (2010),
Haj-Ali and Aboudi (2010) and references cited there.

Lemaitre et al. (2000) presented a continuum damage theory
with anisotropic damage evolution in ductile materials that gener-
alizes the isotropic damage theory of Lemaitre (1985a,b) which is
based on a scalar variable. In addition, Lemaitre and Desmorat
(2005) presented anisotropic damage model for a brittle material

(concrete). The purpose of the present investigation is to couple
these theories with a micromechanics model for the prediction of
the response of ductile and brittle matrix composites with evolving
damage. As is shown in this investigation, the resulting microme-
chanics analyses enable the study of the effect of anisotropic dam-
age laws by comparisons with the corresponding isotropic damage
theories and by tracking the evolutions of the components of the
damage tensor.

The micromechanics model that is employed in the present
investigation is referred to as The High Fidelity Generalized Method
of Cells (HFGMC) which is based on the homogenization procedure
for periodic multiphase composites. This micromechanics model
has been reviewed by Aboudi (2004) and more recently has been
shown by Haj-Ali and Aboudi (2009) to provide excellent predic-
tion for (undamaged) nonlinear and inelastic matrix composites
by extensive comparisons with finite element solutions. In addi-
tion, this micromechanics model has been coupled by these
authors to a finite element software to investigate the response
of metal matrix composite structures.

This paper is organized as follows. In Section 2, the isotropic and
anisotropic damage theories in unreinforced ductile materials are
presented. This is follows by the presentation of the anisotropic
damage theory of a brittle material. In Section 3, the HFGMC
micromechanics theory is outlined. This includes the one-way
and fully coupled thermoinelastic HFGMC. In the former theory,
the conventional constitutive equations is employed according to
which the thermal effects in the constituent affect the mechanical
response of the material. In the latter theory, the fully coupled
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HFGMC is discussed according to which, a mutual interaction ex-
ists between the mechanical and temperature fields in the constit-
uents (Aboudi, 2008). This mutual interaction between the
mechanical and thermal effects is governed by the coupled energy
equation of the constituents. Due to the inelasticity effects in the
metallic matrix, a major part of the rate of plastic work is liberated
as a heat source to be included in the energy equation. The most
interesting result from the fully coupled HFGMC theory are the
spatial temperature distributions in the composite which are in-
duced by the externally applied mechanical loadings. The genera-
tion of these temperature distributions enables the identification
of critical hot spots in the composite caused by the mechanical
loading. These hot spots indicate the existence of high inelastic
strains which my lead to ultimate failure. In Section 4, extensive
comparisons between the effects of anisotropic and isotropic dam-
age laws in the ductile phase of metal matrix composites are pre-
sented. For the brittle matrix composite, the effect of anisotropic
damage can be evaluated by tracking the evolution of the compo-
nents of the damage tensor. Finally, a Conclusion section discusses
possible future investigations.

2. Constitutive equations of the monolithic materials with
progressive damage

2.1. Ductile materials with isotropic evolving damage

For thermoelastoplastic materials, the total strain tensor is
decomposed, in the framework of the infinitesimal strain theory,
into elastic, thermal and plastic components in the form:

� ¼ �e þ �t þ �p ð1Þ

The constitutive equations of these materials with isotropic
damage law can be determined from the Gibbs potential G (per
unit volume) as follows

� ¼ @G
@r
¼ @Get

@r
þ �p ð2Þ

where r is the stress tensor and Get is the thermoelastic portion of
G. The expression for the thermoelastic contribution Get is given by
(Lemaitre and Desmorat, 2005):

Get ¼
1þ m

2E
r : r
1� D

� m
2E

tr2ðrÞ
1� D

þ aðT � T0ÞtrðrÞ ð3Þ

where tr(r) is the trace of the stress tensor, I is the identity sec-
ond-order tensor, 0 6 D 6 1 is the damage variable, T � T0 is the
temperature deviation from a reference temperature T0 and E, m
and a are the Young’s modulus, Poisson’s ratio and coefficient
of thermal expansion of the isotropic material. Consequently,
the following expression for the elastic and thermal strains is
obtained

�e þ �t ¼ @Get

@r
¼ 1þ m

E
~r� m

E
trð~rÞI þ aðT � T0ÞI ð4Þ

with ~r being the effective stress which is related to the stress r in
the form: ~r ¼ r=ð1� DÞ. This equation provides the following
expression for the stress and effective stress tensors:

r ¼ ð1� DÞh : �e ð5Þ

and

~r ¼ h : �e ð6Þ

with h being the standard forth-order stiffness tensor of isotropic
materials

h ¼ kI � I þ 2lI4 ð7Þ

where k and l are the Lame’ constants and I4 is the forth-order unit
tensor. It should be noted that Eq. (6) is based on the principle of
strain equivalence according to which the strains in the damaged
and effective configurations are equal. Hence, the strain constitutive
equations of the damaged material are derived from the corre-
sponding equations of the undamaged material by replacing stress
in the latter by the equivalent stress.

By assuming isotropic hardening, the yield function / is given
by

/ ¼ ~req � ry ¼
1

1� D
req � ry ð8Þ

where Xeq of the second-order tensor X stands for

Xeq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2

devðXÞ : devðXÞ
r

¼
ffiffiffi
3
2

r
kdevðXÞk ð9Þ

and dev(X) is the deviator of X. In Eq. (8), ry is the function that de-
scribes the hardening of the elastoplastic material. For isotropic
hardening it is given by

ry ¼ Y0 þ KðRÞ ð10Þ

where Y0 is the yield stress in simple tension and K(R) describes the
isotropic hardening law. For linear hardening: K(R) = H0 R. The rate
of hardening is given by

_R ¼ � _c
@/
@K
¼ _c ð11Þ

where c is the consistency parameter. The evolution of the plastic
strains is given by

_�p ¼ _c
@/
@r
¼ 3 _c

2ð1� DÞ
devð~rÞ

~req
¼

ffiffiffi
3
2

r
_c

1� D
devðrÞ
kdevðrÞk ð12Þ

The equivalent plastic strain can be obtained from this equation as
follows

_�p ¼
ffiffiffi
2
3

r
k _�pk ¼

_c
1� D

ð13Þ

The energy release rate Y is given in the form (Lemaitre and
Desmorat, 2005)

Y ¼ �1
2
�e : h : �e ¼ �

~r2
eq

2E
2
3
ð1þ mÞ þ 3ð1� 2mÞ rH

req

� �2
" #

¼ �
r2

eq

2Eð1� DÞ2
2
3
ð1þ mÞ þ 3ð1� 2mÞ rH
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� �2
" #

ð14Þ

where rH = tr(r)/3 being the hydrostatic stress.
Finally, the dissipation function w, also referred to as inelastic

potential function, from which the inelastic flow rule and the evo-
lution laws for the internal variables and damage are derived. It is
taken in the form

w ¼ /þ S
ð1� DÞðsþ 1Þ

�Y
S

� �sþ1

ð15Þ

where S and s are material constants. This function provides the iso-
tropic evolution law of damage in the form

_D ¼ � _c
@w
@Y
¼

_c
1� D

�Y
S

� �s

ð16Þ

The above system of nonlinear equations together with the condi-
tion that / = 0 that govern the behavior of monolithic thermoela-
stolplastic materials with isotropic evolving damage are solved
incrementally in conjunction with the return mapping algorithm
(de Souza Neto et al., 2008).
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