
Strain gradient elastic homogenization of bidimensional cellular media

N. Auffray a,*, R. Bouchet b, Y. Bréchet c

a ONERA-DMSM BP72 – 29 avenue de la Division Leclerc, 92322 Chatillon Cedex, France
b Teuchos, Dpt. Matériaux et Support Production Montigny-le-Bretonneux, France
c SIMAP Domaine Universitaire de Grenoble, F-38402, Saint Martin d’Hères Cedex, France

a r t i c l e i n f o

Article history:
Received 5 October 2009
Received in revised form 10 March 2010
Available online 16 March 2010

Keywords:
Homogenization
Symmetry classes
Strain gradient elasticity
Anisotropy

a b s t r a c t

The present paper aims at introducing an homogenization scheme for the determination of strain gradi-
ent elastic coefficients. This scheme is based on a quadratic extension of homogeneous boundary condi-
tion (HBC). It allows computing strain elastic effective tensors. This easy-to-handle computational
procedure will then be used to construct overall behaviors and to verify some theoretical predictions
on strain gradient elasticity.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Lightweight and innovative materials design is nowadays one of
the most important challenge for material engineering, the goal is
to reach high mechanical properties with low density materials. To
achieve such contradictory objectives, scientific community fo-
cused on mesoscale structured cellular materials. Such material
design requires to understand at the same time the relation be-
tween architecture and physical properties, and the explicit meth-
od to calculate those properties.

According to a geometrical definition of a RVE (Representative
Volume Elementary) a classical way to obtain the overall behavior
of the cellular material is to use homogenization theory. It is well
known that classical homogenization theory relies on a broad scale
separation between geometric pattern and mechanical fields. If the
scale separation is not broad enough, the classical theory fails to
predict the overall behavior. As shown by Boutin (1996) and Forest
(1998), keeping a continuum description requires to consider a
generalized continuum to model the substitution material.

Especially, when designing millimetric microstructural materi-
als to be implemented in centimetric structures (e.g. hollow
spheres stacking for acoustical absorber (Gasser, 2003)) strong
scale separation is not granted. Then, second-order elastic effects
have to be taken into account in the homogenization approach.

As the number of elastic constants in strain gradient theories
dramatically increases with the order of tensors, a systematic
way of identifying such coefficients is necessary. We proposed here

such a method by combining recent results in extended homogeni-
zation methods and symmetry properties of higher-order stiffness
tensors:

� Quadratic homogenization scheme through the use of quadratic
boundary conditions (Gologanu et al., 1997; Forest, 1999).
� Extended Voigt notations for different symmetry classes of sec-

ond gradient elasticity (Auffray et al., 2009).

Our main results are 3-folds:

1. First, it is shown that the circular cavity shape used in several
higher-order homogenization schemes (Gologanu et al., 1997;
Zybell et al., 2008) leads to a singular sixth-order elasticity
tensor.

2. Second, it is shown numerically that the application of the qua-
dratic homogenization scheme provides isotropic second-order
effective properties for octagonal and pentagonal cell shapes, thus
illustrating purely mathematical considerations of symmetry.

3. Finally, an example of chiral dependent behavior is given, illus-
trating an exotic property of strain gradient elasticity.

These results confirm that generalized homogenization schemes
are powerful tools to estimate higher-order elastic properties. Fur-
thermore some useful operators to translate higher-order moduli
from the equivalent first strain gradient into the second gradient
of displacement theories, according to Mindlin’s formulation, are
provided.

To reach those objectives, several facts on strain gradient
elasticity will be recalled in Section 2. Some basic definitions and
results about symmetry classes (Auffray et al., 2009) will be
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summed up. In a second time, attention will be focused on the
homogenization scheme. Extension of the effective modulus ap-
proach was firstly proposed by Gologanu et al. (1997) then used
by Forest and Sab (1998). This approach will be detailed and spec-
ified to our problem. All the needed operators will be defined. The
last section will be devoted to numerical experiments on different
geometrical patterns. It will be shown that isotropic homogeniza-
tion proceed on a circular shape (as proposed in Gologanu et al.
(1997) and Zybell et al. (2008)) leads to a degenerated isotropic
tensor that should not be used in computational simulation.
Another construction based on Hermann theorem consequences
(Auffray, 2008) will be proposed.

2. Mindlin’s strain gradient elasticity

2.1. Constitutive law

In classical elasticity theory stress at a material point is linked
to strain through the classical elasticity tensor. This relation, usu-
ally known as Hooke law, is written in tensorial fashion:

rðijÞ ¼ CðijÞðlmÞeðlmÞ ð1Þ

with rðijÞ the symmetrical-stress tensor, eðlmÞ the strain tensor and
CðijÞðlmÞ the tensor describing material elastic properties. The nota-
tion () stands for the minor symmetries whereas . . . stands for
the major ones.

Second-grade elasticity is a kinematic enhancement of classical
elasticity taking into account the second gradient of displacement
in the mechanical formulation. Such a generalization could be con-
structed in, at least, three different, but equivalent, ways (Mindlin
and Eshel, 1968). In this paper interest will be focused on the two
first formulations.

In type I formulation, the freedom extra degrees will simply be
defined as the second gradient of displacement:

j
’

I ¼ u�r�r ð2Þ

whereas in type II formulation the strain gradient will be
considered:

j
’

II ¼ e
�
�r ð3Þ

These two definitions solely differ by the index symmetry of j
’

.
We have got jI

iðjkÞ and jII
ðijÞk with the following relations between

those two systems:

jII
ijk ¼

1
2

jI
ijk þ jI

jik

� �
ð4Þ

jI
ijk ¼ jII

ijk þ jII
kij � jII

jki ð5Þ

As these two systems are defined up to a permutation, other
properties will be introduced just for type II elasticity: strain gradi-
ent elasticity (SGE).

Taking into account strain gradient effect in the mechanical for-
mulation leads to define symmetrically the hyperstress tensor sðijÞk.
In each material point, the knowledge of the stress and the hyper-
stress tensors allows to compute the effective tensor gðijÞ. This ten-
sor is defined as:

gðijÞ ¼ rðijÞ � sðijÞk;k ð6Þ

It is the tensor to be considered to calculate the local equilib-
rium (Forest, 2004). Tensors rðijÞ and sðijÞk are related with eðlmÞ
and jðlmÞn through the following general constitutive law:

rðijÞ ¼ CðijÞðlmÞeðlmÞ þMðijÞðlmÞnjðlmÞn ð7Þ

sðijÞk ¼ MðijÞkðlmÞeðlmÞ þ AðijÞkðlmÞnjðlmÞn ð8Þ

where the tensor AðijÞkðlmÞn is the second-order elasticity tensor and
MðijÞðlmÞn the coupling tensor between first and second-order
elasticity.

In a 3-D space this coupling tensor will vanish for a centro-sym-
metric media (Triantafyllidis and Bardenhagen, 1996). In 2-D space
this tensor vanishes for any media that is even order rotational
invariant (Auffray et al., 2008). For both cases the constitutive rela-
tion could be rewritten as follow:

rðijÞ ¼ CðijÞðlmÞeðlmÞ ð9Þ
sðijÞk ¼ AðijÞkðlmÞnjðlmÞn ð10Þ

To switch constitutive law from one system to another, the fol-
lowing operators could easily be defined:

PI!II
ijklmn ¼

1
2

dildjm þ dimdjl

� �
dkn ð11Þ

PII!I
ijklmn ¼ dildjmdkn þ dimdjndkl � dindjldkm ð12Þ

where P
��

I!II stands for the operator from type I to type II, and con-

versely. The following relation holds true:

PI!II
ijkopqPII!I

opqlmn ¼ 1II
ijklmn ð13Þ

where 1
��

II should not be confused with the sixth-order identity ten-

sor; a symmetrical relation could also be defined for 1
��

I.

Switching between the two systems is related to the fact that
most of our theoretical results are demonstrated in type II sec-
ond-grade elasticity whereas the boundary conditions needed for
the homogenization scheme are more natural in type I formulation.
As transformations from one system to another are straightfor-
ward, it seems interesting to point out how to transfer results.
Let us now introduce some results about SGE anisotropic tensors.

2.2. Anisotropic tensors

Most of the results presented here could be found and detailed
in Auffray et al. (2009) and Auffray (2009). A true tensorial repre-
sentation for SGE tensor will first be introduced. Then for each
material symmetry group the corresponding physical group will
be given including minimal number of coefficient of the associated
tensor. For the hereafter studied anisotropic systems the corre-
sponding Voigt representations will be given.

2.2.1. Voigt tensorial representation
In order to handle the second-order elastic tensor, a mathemat-

ical transformation could be introduced to turn the two-dimen-
sional sixth-order tensor into a six-dimensional second-order
tensor.1 This transformation allows rewriting the second-order con-
stitutive relation as2:

ŝa ¼ bAðabÞĵb ð14Þ

A rigorous way of representing the sixth-order tensor A as a sec-
ond-order one according to its symmetries is:

1 The permutation order-dimension is just a coincidence, in 3-D the same
transformation would turn a three-dimensional sixth-order tensor into a 18-
dimensional second-order tensor.

2 The hat notation ^ indicates a second-order representation of a sixth-order tensor.
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