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a b s t r a c t

In this paper, we study the propagation of shear waves in a magnetoelastic self-reinforced medium using
finite difference technique. Dispersion equation has been deduced for the case when (n � 1) layers lie
over a half space. It is observed that the obtained dispersion equation is in assertion with the classical
Love wave equation for both the cases when a single and double layer lies over a half space. The stability
condition for the used finite difference scheme and the expression for the phase and group velocity have
been derived. The dispersion curve for different values of magnetoelastic coupling parameter, phase and
group velocity variation for different values of stability ratio has been depicted by means of graphs.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The wave propagation in a reinforced media plays a vital role in
construction sector and geophysics. The characteristic property of
a self-reinforced material is that its component act together as a
single anisotropic unit as long as they remain in elastic condition,
i.e. the two components are bound together so that there is no rel-
ative displacement between them. There is sufficient evidence in
the literature that the Earth crust may contain some hard/soft
rocks or material that may exhibit self-reinforcement properties.
These rocks when they come in the way of seismic waves do effect
their propagation and such seismic signals are always influenced
by the elastic properties of media through which they travel.
Anderson (1962) has studied Love wave propagation in a medium
composed of transversely isotropic layers. He has solved the
boundary value problem for a simple layer and extended to multi-
layered media by a generalization of Haskell’s technique.

The idea of introducing a continuous reinforcement at every
point of an elastic solid was given by Belfield et al. (1983). Later
Verma and Rana (1983) applied this model to the rotation of tube,
illustrating its utility in strengthening the lateral surface of the tube.
Verma (1986) also discussed the propagation of magnetoelastic
shear waves in self-reinforced bodies. The problem of magnetoelas-
tic transverse surface waves in self-reinforced elastic solids was
studied by Verma et al. (1988). Chattopadhyay and Chaudhury
(1990) studied the propagation, reflection and transmission of mag-
netoelastic shear waves in a self-reinforced elastic medium. Chatto-
padhyay and Chaudhury (1995) studied the propagation of

magnetoelastic shear waves in an infinite self-reinforced plate.
Chattopadhyay and Venkateswarlu (1998) investigated a two-
dimensional problem of stress produced by a pulse of shearing force
moving over the boundary of a fibre-reinforced medium. Various ap-
proaches for characterizing the effective thermal, electrical, and
elastic properties of composite media have been introduced since
Maxwell’s seminal work on spherical particle suspensions more
than a century ago (Milton, 2002). Chaudhary et al. (2005) studied
transmission of shear waves through a self-reinforced layer between
two inhomogeneous elastic half-spaces. Chaudhary et al. (2006) also
discussed the plane SH wave response from elastic slab interposed
between two different self-reinforced elastic solids. Recently,
Chattopadhyay et al. (2009) have shown that the propagation of Tor-
sional waves in fibre-reinforced material is also possible.

Most of the techniques for solving the wave equation involve
some sort of approximation as the reflectivity method assumes lat-
eral homogeneity, Ray method assumes that the seismic wave-
length is short compared with the scale of heterogeneity. But the
finite element method and finite difference method (Alterman
and Karal, 1968; Alford et al., 1974; Kelly et al., 1976) solved the
exact elastic wave equation for generally heterogeneous media.
This paper deals only with the finite difference method. Finite dif-
ference method (FDM) is preferred because of its power, accuracy,
reliability, rapidity and flexibility. Early researches on finite differ-
ence methods for seismic forward modelling include the work of
Alterman and Karal (1968) and Kelly et al. (1976). Earlier Thomp-
son (1950) and Haskell (1953) have given a matrix formalism to
obtain the phase velocity dispersion equation for Rayleigh and
Love-type elastic surface wave in solid multilayered media. Later
Crampin (1970) extended the matrix procedure to obtain the dis-
persion relation for generalized surface waves in multilayered
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media, where the layer may be either isotropic or anisotropic. Kaly-
ani et al. (2008) have solved a problem of wave propagation in
monoclinic media using finite difference method.

When the wave equation is solved in the frequency domain, the
accuracy requirement is the most important but when the wave
equation is solved in the time domain, it is necessary to achieve
both accuracy and stability requirements. By considering higher-
order schemes, accuracy problem can be tackled, but a numerical
scheme must meet the stability requirement. Many researchers
(e.g. Mitchell, 1969; Gazdag, 1981; Holberg, 1987; Cao and Green-
halgh, 1998) have developed stability criteria for various numerical
schemes for 1-D, 2-D and 3-D wave simulation.

In this paper, we have studied the propagation of Shear waves
in multilayered magnetoelastic self-reinforced medium by explicit
finite difference technique and deduced the general dispersion
relation considering (n � 1) layers lying over a half space. It has
been observed that the obtained dispersion equation reduces to
the classical SH wave equation for the isotropic case when a single
or double layer is considered over a half space. It is distinctly
marked that phase velocity dispersion curve is affected by mag-
netoelastic self-reinforced parameter. The stability criterion for
the used finite difference scheme and the expression in terms of
stability ratio (Aki and Richards, 1980) for the phase and group
velocity has been derived. The phase/group velocities have been
computed for different values of stability ratio and are presented
by means of graphs.

2. Formulation and solution of the problem

Let us consider total (n � 1) magnetoelastic self-reinforced layer
lying over a magnetoelastic self-reinforced half-space. The x-axis
has been taken along the propagation of waves and z-axis is posi-
tive vertically downwards as shown in Fig. 1. The numbering of the
layers is being done in top down fashion, i.e. the uppermost layer is
numbered as (1) and half space as (n). At first, we need to find the
equation governing the propagation of SH wave in self-reinforced
magnetoelastic crustal layer.

The constitutive equations used in a self-reinforced linearly
elastic model are (Belfield et al., 1983)

sij ¼ kekkdij þ 2lT eij þ aðakamekmdij þ ekkaiajÞ
þ 2ðlL � lTÞðaiakekj þ ajakekiÞ þ bakamekmaiaj;

i; j; k;m ¼ 1;2;3; ð1Þ

where sij are components of stress, eij components of infinitesimal
strain, dij Kronecker delta, ai components of~a, all referred to rectan-
gular cartesian co-ordinates xi.~a ¼ ða1; a2; a3Þ is the preferred direc-
tions of reinforcement such that a2

1 þ a2
2 þ a2

3 ¼ 1. The vector ~a may
be function of position. Indices take the values 1, 2, 3 and summa-

tion convention is employed. The coefficients k; lT ; a; b and
2ðlL � lTÞ are elastic constants with dimension of stress. lT can
be identified as the shear modulus in transverse shear across the
preferred direction, and lL as the shear modulus in longitudinal
shear in the preferred direction. a and b are specific stress compo-
nents to take into account different layers for concrete part of the
composite material. The model considered here is of transversely
isotropic material, also known as materials of hexagonal symmetry.

Equations governing the propagation of small elastic distur-
bances in a perfectly conducting self-reinforced elastic medium
having electromagnetic force J

!
� B
!
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!
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the electric current density and B
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interaction of mechanical and electromagnetic fields is considered.
Let ui ¼ ðu1;v1;w1Þ and denoting x1 ¼ x; x2 ¼ y; x3 ¼ z then Eq.

(2) can be written as

os11

ox
þ os12

oy
þ os13

oz
þ J

!
� B
!

� �
x
¼ q

o2u1

ot2 ;

os12

ox
þ os22

oy
þ os23

oz
þ J

!
� B
!

� �
y
¼ q

o2v1

ot2 ;

os13

ox
þ os23

oy
þ os33

oz
þ J

!
� B
!

� �
z

¼ q
o2w1

ot2 :

9>>>>>>>>>=
>>>>>>>>>;

ð3Þ

For SH wave propagating in the x-direction and causing displace-
ment in the y-direction only, we shall assume that

u1 ¼ w1 ¼ 0; v1 ¼ v1ðx; z; tÞ and
o

oy
� 0: ð4Þ

Using Eq. (4) in Eq. (3), we have
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ot2 ; ð5Þ

where

s12 ¼ lT
ov1

ox
þ ðlL � lTÞa1 a1

ov1

ox
þ a3

ov1

oz

� �
;

s23 ¼ lT
ov1

oz
þ ðlL � lTÞa3 a1

ov1

ox
þ a3

ov1

oz

� �
:

For stresses s12 and s23, the first part indicate the shear stress due
to elastic members (steel) and the second part indicates effect of
comparatively non-elastic material of the composite section in the
same direction.

The first component would be having the term lT , which can be
termed as elastic coefficient and ðlL � lTÞ in the second term
amounts for the effect comparatively non-elastic portion of the
composite material.

The well-known Maxwell’s equations governing the electro-
magnetic field are

r
!
� B
!
¼ 0;r

!
� E
!
¼ � o B

!

ot ;r
!
�H
!
¼ J
!
;

B
!
¼ le H

!
and J

!
¼ r E

!
þ oui

ot � B
!

� �
;

9>=
>; ð6Þ

where E
!

is the induced electric field, J
!

is the current density vector
and magnetic field H

!
includes both primary and induced magnetic

fields. le and r are the induced permeability and conduction coef-
ficient, respectively.
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Fig. 1. Geometry of the problem.
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