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a b s t r a c t

Recent works have established the critical role of flexoelectricity in a variety of size-dependent physical
phenomena related to ferroelectrics including giant piezoelectricity at the nanoscale, dead-layer effect in
nanocapacitors, dielectric properties of nanostructures among others. Flexoelectricity couples strain gra-
dients to polarization in both ordinary and piezoelectric dielectrics. Relatively few experimental works
exist that have determined flexoelectric properties and they all generally involve some sort of bending
tests on micro-specimens. In this work, we present a straightforward method based on nanoindentation
that allows the evaluation of flexoelectric properties in a facile manner. The key contribution is the devel-
opment of an analytical model that, in conjunction with indentation load–displacement data, allows an
estimate of the flexoelectric constants. In particular, we confirm the experimental results of other groups
on BaTiO3 which differ by three orders of magnitude from atomistic predictions. Our analytical model
predicts (duly confirmed by our experiments) a strong indentation size-effect due to flexoelectricity.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Piezoelectricity exists only in non-centrosymmetric crystals.
However, a somewhat under-appreciated fact is that all dielectrics
polarize when subjected to inhomogeneous strain. This phenome-
non, the coupling of strain gradients to polarization, is known as
flexoelectricity. Phenomenologically, the total polarization can be
expressed as:

Pi ¼ dijkejk|fflffl{zfflffl}
¼0; for centrosymmetric materials

þlijkl
@ejk

@xl
: ð1Þ

Recently, flexoelectricity has generated much excitement due to the
elucidation of several insights relevant at the nanoscale. For exam-
ple, Catalan et al. (2004) have studied the impact of flexoelectricity
on the dielectric properties and Curie temperature of ferroelectric
materials while Cross and coworkers (1999, 2006) have proposed
tantalizing notions such as ‘‘piezoelectric composites without using
piezoelectric materials”. Eliseev et al. (2009) have investigated the
renormalization of properties of ferroelectric nanostructures due
to the spontaneous flexoelectric effect as well as developed analyt-
ical approaches to derive size-effects in such nanostructures
(Eliseev and Morozovska, 2009). One of us has demonstrated strong
size-dependent enhancement of the apparent piezoelectric coeffi-

cient in materials that are intrinsically piezoelectric (Majdoub
et al., 2008a, 2009b) as well as explored ramifications for energy
harvesting (Majdoub et al., 2008b, 2009c). More recently Majdoub
et al. (2009a) have also demonstrated, through first principles and
theoretical calculations, that the so-called dead-layer effect in nan-
ocapacitors may be strongly influenced by flexoelectricity. The
reader is referred to reviews by Tagantsev (1986, 1991), Tagantsev
et al. (2009) for further details.

Relatively few experimental works exists on the determination
of flexoelectric properties of crystals. Cross and co-worker’s pio-
neering work provided some of the first data on various perovsk-
ites like PMN, PZT, BST, and BaTO3 (Ma and Cross, 2001, 2002,
2003, 2006; Fu et al., 2006, 2007). More, recently Zubko et al.
(2007) have published the experimental characterization of the
complete flexoelectric tensor for SrTiO3. The afore-mentioned
experimental approaches are predicated on bending experiments
and are decidedly non-trivial. In parallel, various groups have also
made atomistic predictions of flexoelectric properties. For exam-
ple, one of us (Maranganti and Sharma, 2009) presented results
for a number of dielectrics of technological and scientific interest.
Dumitrica et al. (2002), Kalinin and Meunier (2008) discuss graph-
ene and very recently, Hong et al. (2010) presented a first princi-
ples approach and consequent data for both SrTiO3 and BaTO3.
While the theoretical works of various groups are all in agreement,
the experimentally estimated flexoelectric constant of BaTO3 is 3
orders of magnitude higher compared to the atomistically pre-
dicted value. The reasons for this discrepancy are still an open
research issue (and beyond the scope of the present paper).
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In this paper, we present a nano-indentation based methodol-
ogy to extract flexoelectricity properties of dielectrics. The key con-
tribution is the development of an analytical model of indentation
of a ferroelectric surface duly incorporating both piezoelectricity
and flexoelectricity. This analytical model can then be used with
rather easily generated load–displacement data to extract the de-
sired properties. The outline of the paper is as follows: in Section
2, we present the mathematical problem followed by an approxi-
mate analytical solution. Experimental work is described in Section
3 and our major results are presented in Section 4. Implications of
the present work, including the identification of the indentation
size-effect due to flexoelectricity are discussed in Section 5 where
we also summarize our conclusions. Some initial results on the
indentation size-effects were communicated earlier by us in a ra-
pid communication (Gharbi et al., 2009).

2. Indentation problem for piezoelectric-flexoelectric half-
space

We consider the indentation of a transversely isotropic material
by a circular flat indenter of radius a as shown in Fig. 1. Recently,
Kalinin et al. (2004), Karapetian et al. (2005), have developed
closed form solutions for piezoelectric half-space indentation
problem for the cases of flat, spherical and conical indenters using
the correspondence principle (Karapetian et al., 2002). The objec-
tive of this section is to present the mathematical development
leading to expressions that inter-relate applied concentrated force
P, concentrated charge Q, indentation depth w and tip potential w0.

According to Majdoub et al. (2008a), the governing equations of
a continuum with simultaneous presence of piezoelectricity and
flexoelectricity valid for a dielectric occupying a volume V bounded
by a surface S in a vacuum V0 are:

r � rþ f ¼ q€u where r ¼ c : Sþ d � P þ ðe� f Þ : rP in V ;

Eþr � eE �ruþ E0 ¼ 0 in V ;

� e0Duþr � P ¼ 0 in V

Du ¼ 0 in V 0;

ð2Þ

where

� E ¼ a � P þ g : rP þ f : rruþ d : S;eE ¼ b : rP þ e : Sþ g � P:

The second order tensor a is the reciprocal dielectric susceptibility
and the fourth order tensor c is the elastic tensor. d and f are the
third order piezoelectric tensor and the fourth order flexoelectric
tensor respectively. The fourth order tensor b is the polarization
gradient–polarization gradient coupling tensor. The fourth order
tensor e corresponds to polarization gradient and strain coupling
and g is the polarization-polarization gradient coupling tensor. For

sake of simplicity, we note the term (f � e) by f in the rest of our the-
oretical development.

The corresponding boundary conditions are:

r:n ¼ t;eE:n ¼ 0;
ð�e0kuk þ PÞ � n ¼ 0:

ð3Þ

In anticipation of eventually applying perturbation theory to solve
the rather complicated boundary value problem stated above, we de-

fine that for any i; j ¼ 1;2;3; q ¼ q1
a ¼

fij
ad�, where d� ¼ jd15 jþjd31 jþjd33 j

3

� �
.

Then, constitutive equations for the case of transversely isotropic
material may be explicitly written as follows:

rij

ad�
¼ Cijkl

ad�
Skl þ e�1

0
dkij

ad�
Pk � qe�1

0 Pl;k; ð4Þ

Di

ad�
¼ dikl

ad�
Skl � e�1

0
aik

ad�
Pk þ qSkl;j:

We re-write equilibrium equations @rij/@xi = 0 and equation of
electrostatics @Di/@xi = 0 to obtain a system of four equations for
displacements ux,uy,uz and polarizations Px, Py andPz.

Cijkl

ad�
Skl;i þ e�1

0
dkij

ad�
Pk;i � qe�1

0 Pl;ki ¼ 0; ð5Þ

dikl

ad�
Skl;i � e�1

0
aik

ad�
Pk;i þ qSkl;ji ¼ 0:

The remaining equation is:

Pi;i � e0w;ii ¼ 0: ð6Þ

2.1. Solution of the problem for the case of circular flat indenter

The complexity of the above equations precludes an exact solu-
tion. We employ the perturbation approach, as (for example) used
quite successfully by Holmes in a different context Holmes
(1995).The present boundary value problem is a singular perturba-
tion problem and accordingly, we separately present both ‘‘inner”
and ‘‘outer” solutions.

2.1.1. Outer solution
The perturbation expansion is carried out in terms of the small

parameter q.:

uouter
x ¼ u0

x þ oðqÞ; uouter
y ¼ u0

y þ oðqÞ;
uouter

z ¼ u0
z þ oðqÞ; Pouter

x ¼ P0
x þ oðqÞ;

Pouter
y ¼ P0

y þ oðqÞ; Pouter
z ¼ P0

z þ oðqÞ: ð7Þ

For purely mechanical problem (zero electrical conditions, w = 0 for
(0 6 q �1) the boundary conditions are:

uouter
z ¼ w for 0 6 q < a;

router
zz ¼ 0 for q > a;

souter
z ¼ 0 for 0 6 q <1:

ð8Þ

For purely electrical problem (zero mechanical conditions, uz = 0 for
(0 6 q �1):

wouter ¼ w0 for 0 6 q < a;

Douter
z ¼ 0 for q � a:

ð9Þ

Inserting (7) into (5) and considering the leading order terms only,
we obtain the outer system of equations. This corresponds to q = 0
(absence of flexoelectricity)—i.e., the case of a purely piezoelectric
material solved exactly by Karapetian et al. (2005). For the sake of
completeness, Karapetian et. al.’s solution is summarized in

Fig. 1. Schematic of a transversely isotropic medium indented by circular flat
indenter.
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