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a b s t r a c t

In this work, random homogenization analysis of heterogeneous materials is addressed in the context of
elasticity, where the randomness and correlation of components’ properties are fully considered and ran-
dom effective properties together with their correlation for the two-phase heterogeneous material are
then sought. Based on the analytical results of homogenization in linear elasticity, when the randomness
of bulk and shear moduli, the volume fraction of each constituent material and correlation among ran-
dom variables are considered simultaneously, formulas of random mean values and mean square devia-
tions of analytical bounds and estimates are derived from Random Factor Method. Results from the
Random Factor Method and the Monte-Carlo Method are compared with each other through numerical
examples, and impacts of randomness and correlation of random variables on the random homogeniza-
tion results are inspected by two methods. Moreover, the correlation coefficients of random effective
properties are obtained by the Monte-Carlo Method. The Random Factor Method is found to deliver rapid
results with comparable accuracy to the Monte-Carlo approach.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The homogenization method has been developed and extended
to reduce the number of composite design parameters significantly
by the introduction of effective characteristics using potential or
complementary energy principles (Markovic and Ibrahimbegovic,
2006; Aboudi, 1991; Zohdi and Wriggers, 2005). The method relies
on a statistically representative sample of material, referred to as a
representative volume element (RVE). It is a finite sized sample
from the heterogeneous material that characterizes its macro-
scopic behavior (Aboudi, 1991; Zohdi and Wriggers, 2005; Torqu-
ato, 2002). Although this technique, in its modern version, is
more than 40 years old, there are many novel approaches and
applications, such as in the food industry (Kanit, 2006), some com-
posites made of wood (Lux, 2006), superconductors (Kaminski,
2005), even for time-dependent cases by ‘‘equation free” approach
(Samaey et al., 2006); a variety of materially nonlinear multi-com-
ponent composites can be homogenized as well (Idiart, 2006). Fol-
lowing numerous engineering applications, the strength of
composites can also be estimated by the homogenization method
(Steeves and Fleck, 2006).

Homogenization techniques deliver effective properties of het-
erogeneous materials. Exact computational approaches are sum-
marized in Zohdi and Wriggers (2005). Here, the attention is
focused to estimates and bounds. In this context, early approxima-
tions for the effective properties were first developed by Voigt
(1889) and Reuss (1929). In 1957, Eshelby (1957) obtained a rela-
tively compact solution that has been a basis for many approxima-
tion methods. Based on variational principles, Hashin and
Shtrikman (1962) developed a model that improved solutions of
the effective properties. Additional classical models have been
proposed to estimate the effective properties, including the Self-
Consistent method, the dilute distribution method, and the Mori
and Tanaka (1973) method. Further approaches for estimating or
bounding the effective responses of heterogeneous materials can
be found for instance in Aboudi (1991), Mura (1987) and Nemat-
Nasser and Hori (1999).

In recent years, a lot of attention is paid to random composites
because of an uncertainty in reinforcement location/shape and/or
pore spatial distribution in matrices, and randomness in compo-
nents. Kaminski reported the perturbation-based homogenization
analysis of two-phase composites (Kaminski and Kleiber, 2000)
and the perturbation-based homogenization analysis for thermal
conductivity of unidirectional fiber reinforced composites (Kamin-
ski, 2001). Sakata obtained a macroscopic response by applying
stochastic homogenization analysis for unidirectional fiber rein-
forced composites using the Monte-Carlo simulation (Sakata
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et al., 2008). Sakata also reported the three-dimensional results of
perturbation analysis for the homogenized elastic tensor and the
equivalent elastic properties (Sakata et al., 2008) or the second-or-
der perturbation-based homogenization method (Sakata et al.,
2008). Kaminski also developed a higher order perturbation-based
analysis (Kaminski, 2007). Ostoja-Starzewski (2002) and Xu and
Brady (2005) designed other approaches like the Fourier Galerkin
method for random homogenization analysis. So far, most of the
analytical models still consider the randomness of the geometric
configuration like shape, size, location and distribution of particles,
and the perturbation-based homogenization analysis is used as a
main solution. For composites with different constituents, random-
ness of physical properties and volume fraction of the different
constituents has an important effect on the effective properties
after homogenization. Especially, the correlation among random
variables should be fully considered, as should be the correlation
among final random results. The perturbation method is based
on the hypothesis that a random variable has a small perturbation
about the mean value and subsequently Taylor series is used to de-
scribe a random variable as the sum of a determinate part plus a
perturbation part that together transform the nonlinear equations
into linear recursion formulas. For this reason, it is easy to get the
first-order perturbation expansion, but a great deal of computation
is needed to get the second-order or higher-order perturbation
terms and the final results because of second-order or higher-order
partial derivatives included. Moreover, this approach can quickly
become numerically intractable when a large number of random
variables are involved (Kaminski and Kleiber, 2000). Finally, due
to the existence of secular terms, the accuracy and application of
perturbation method is limited to some degree.

The goal of this work is to solve the random homogenization
problem by two different methods while completely considering
the randomness and correlation of the heterogeneous material.
Based on the summary of the analytical results regarding the esti-
mation of effective linear elasticity parameters, random effective
properties of the two-phase heterogeneous materials are analyzed
by the Random Factor Method (RFM) and the Monte-Carlo Method
(MCM), in which the randomness of the bulk and shear moduli,
volume fractions of the two constituents and the correlation
among the random variables are considered fully. The numerical
characteristics of effective properties after homogenization are de-
rived by means of the random variable’s moment method, and they
are then compared with those obtained by MCM in order to verify
the effectiveness of the method given in this paper. A future aim
along this direction is to introduce the uncertainty to the finite ele-
ment analysis of linear and nonlinear heterogeneous materials and
multiscale engineering problems with heterogeneities distributed
over multiple length scales.

2. Random analysis of the analytical bounds and estimates for
the effective elasticity moduli

2.1. Monte-Carlo Method (MCM)

Monte-Carlo Method, the alternative to RFM, is used to solve
the random problem by the test of random samples. According to
the principle of MCM, samples associated with every random var-
iable should be generated from their probabilistic distribution and
correlation. Each sample realization is analyzed to obtain target
quantities that display a statistical distribution. For normal distri-
butions that are typically obtained in homogenization techniques,
this statistical distribution is characterized by the mean value and
the mean square deviation. In most Monte-Carlo simulations, dif-
ferent random variables are assumed to be independent of each
other. However, this assumption does not hold in many engineer-
ing problems. Based on the Cholesky factorization of covariance

matrix of random vector (Ali Touran, 1992), the simulation of the
correlation among random variables is realized by MCM in this
work. Some computational results and conclusions about correla-
tion of random variables are given in Section 3.3.

2.2. Random Factor Method

The main ideas of Random Factor Method (RFM) (Ma et al.,
2006; Gao et al., 2004) are as follows. A random variable y can
be expressed as a random factor ~y multiplied by its mean value
ly : y ¼ ~y � ly. The random factor represents the randomness of
the variable; its mean value is 1.0 and its mean square deviation
is that of the random variable. ~y obeys the same probabilistic dis-
tribution as y.

The main analyzing procedure by RFM in this paper is: firstly,
the constituent’s random variable is expressed as its random factor
multiplied by its mean value; secondly, the material’s effective
properties are then written as random factors of constituents’ ran-
dom properties and volume fractions multiplied by their mean val-
ues respectively, that is, the material’s effective properties are the
functions of these random factors; finally, the mean values and
mean square deviations of the effective properties can be obtained
by using moment method of random variables.

RFM can directly and clearly reflect the influence of any random
variable on the results. Additionally, based on the random vari-
ables’ moment method, it is easy to consider the effect of correla-
tion among random variables on homogenization results by RFM.

In the following, aiming at two-phase heterogeneous materials,
the analytical bounds (Reuss–Voigt bounds (RV), Hashin–Shtrik-
man bounds (HS)) and estimates (Maxwell/Mori–Tanaka model
(MW), Self-Consistent model (SC), Differential model (DF)) listed
in Tables 1 and 2 (Torquato, 2002) will be considered. The mean
values and mean square deviations of random effective properties
will be derived by RFM.

In Tables 1 and 2, the volume average hð�Þi ¼def
V ð1Þð�Þð1Þþ

V ð2Þð�Þð2Þ; hð~�Þi ¼def
V ð1Þð�Þð2Þ þ V ð2Þð�Þð1Þ; kð1Þ;uð1Þ;V ð1Þ are the bulk and

shear moduli and the volume fractions of the first type of constit-
uent; k(2), u(2) and V(2) are those of the second type of constituent;

f ðx; yÞ ¼ y½dx=2þðdþ1Þðd�2Þy=d�
xþ2y ; gðxÞ ¼ 2ðd�1Þ

d x; for HS model, it is assumed

that k(2) P k(1), u(2) P u(1).
Considering the randomness of k(1), u(1), k(2), u(2) and V(2) simul-

taneously, they can be written as kð1Þ ¼ ~kð1Þ � lkð1Þ ; k
ð2Þ ¼ ~kð2Þ�

lkð2Þ ;u
ð1Þ ¼ ~uð1Þ � luð1Þ ;u

ð2Þ ¼ ~uð2Þ � luð2Þ and V ð2Þ ¼ eV ð2Þ � lVð2Þ from
RFM, where ~kð1Þ; ~uð1Þ; ~kð2Þ; ~uð2Þ; eV ð2Þ are the random factors
of k(1), u(1), k(2), u(2), V(2) respectively, mean values of random fac-
tors are 1.0 and their mean square deviation are those
rkð1Þ ;ruð1Þ ;rkð2Þ ;ruð2Þ ;rV ð2Þ of k(1), u(1), k(2), u(2), V(2) respectively,
lkð1Þ ;luð1Þ ;lkð2Þ ;luð2Þ ;lV ð2Þ are mean values of every random variable
respectively.

For RV, HS and MW models in Tables 2 and 1, they are explicit
and can be generally described as follows:

k� ¼ G ~kð1Þlkð1Þ ; ~u
ð1Þluð1Þ ;

~kð2Þlkð2Þ ; ~u
ð2Þluð2Þ ;

eV ð2ÞlVð2Þ

� �
; ð1Þ

Table 1
A summary of analytical estimates for the effective elasticity moduli for spherical
particles in d-dimensions.

Model k* u*

SC P2
i¼1V ðiÞ kðiÞ�k�

kðiÞþgðu�Þ
¼ 0

P2
i¼1V ðiÞ uðiÞ�u�

uðiÞþf ðk� ;u� Þ ¼ 0

DF dk�

dV ð2Þ
¼ 1

1�V ð2Þ
½k� þ gðu�Þ� kð2Þ�k�

kð2Þþgðu�Þ
du�

dVð2Þ
¼ 1

1�V ð2Þ
½u� þ f ðk�;u�Þ� uð2Þ�u�

uð2Þþf ðk� ;u� Þ

MW k��kð1Þ

k�þgðuð1Þ Þ ¼ V ð2Þ kð2Þ�kð1Þ

kð2Þþgðuð1Þ Þ

� �
u��uð1Þ

u�þf ðkð1Þ ;uð1Þ Þ
¼ V ð2Þ uð2Þ�uð1Þ

uð2Þþf ðkð1Þ ;uð1Þ Þ

� �
Here Maxwell/Mori–Tanaka model yields identical results to the Mori–Tanaka
model, although the derivation procedures are slightly different (Torquato, 2002).
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