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a b s t r a c t

This paper presents conditions for self-equilibrium and super stability of dihedral ‘star’ tensegrity struc-
tures, based on their dihedral symmetry. It is demonstrated that the structures are super stable if and
only if they have an odd number of struts, and the struts are as close as possible to each other. Numerical
investigations show that their prestress stability is sensitive to the geometry realisation.

� 2009 Published by Elsevier Ltd.

1. Introduction

In this paper, we describe the equilibrium and stability of dihe-
dral ‘star’ tensegrity structures which we derive from the classic
dihedral prismatic tensegrity structures. Both of these two classes
of structures are of dihedral symmetry, and therefore, the stability
properties of the star structures can be investigated by the meth-
ods for the prismatic structures in our early studies (Zhang et al.,
2009a,b).

The horizontal cables in each of the two parallel circles contain-
ing the nodes in a prismatic structure are replaced by a star of
cables in a ‘star’ structure, with a new centre node. An example
‘star’ structure is shown in Fig. 1(b), along with the parent pris-
matic structure in Fig. 1(a). Also shown in Fig. 1(c) is a modified
version of the structure, where there exists a centre member con-
nected to the two centre nodes.

There is a clear link between the star structures, and the parent
prismatic structures that were studied by Connelly and Terrell
(1995) and Zhang et al. (2009a). Indeed, we shall see that the equi-
librium positions of the nodes, and self-stress forces in the vertical
cables and the struts, are identical in the star and prismatic struc-
tures, as long as there is no centre member. However, the star
structure has many more infinitesimal mechanisms than its parent
prismatic structure: at each of the boundary nodes, a strut is in
equilibrium with two cables, all of which must therefore lie in a

plane; thus, out-of-plane movement of the node must be an infin-
itesimal mechanism, and there are at least six infinitesimal mech-
anisms – in fact there is another infinitesimal mechanism
corresponding to the existence of one self-stress mode of the struc-
ture. By contrast, there is only one infinitesimal mechanism in the
prismatic tensegrity structure. Despite this, we will show that
many dihedral star tensegrity structures can be stable, and further,
that in some cases they are super stable, which implies that they
are stable for any level of self-stress, independently of the stiffness
of the members.

Following this introduction, the paper is organized as follows:
Section 2 uses the symmetry of a star structure to find its configura-
tion and self-stress forces in the state of self-equilibrium. Section 3
presents the necessary and sufficient condition for an ‘indivisible’
structure. Section 4 block-diagonalises the force density matrix
and finds the condition, in terms of connectivity of vertical cables,
for super stability of the star structures; prestress stability of the
structures that are not super stable is numerically investigated. Sec-
tion 5 briefly concludes the study on the star structures, and dis-
cusses the stability properties of those with centre members.

2. Configuration

In this section, we introduce the connectivity and geometry of a
general star structure, and find the internal forces that equilibrate
every node. The structure has dihedral symmetry, and this symme-
try allows us to calculate symmetric state of self-stress by consid-
ering the equilibrium equations of only representative nodes.
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2.1. Symmetry and connectivity

We are considering star tensegrity structures that have dihedral
symmetry, denoted by Dn (in the Schoenflies notation, see for
example Kettle (1995)): there is a single major n-fold rotation
ðCi

nÞ axis, which we assume is the vertical, z-axis, and n twofold
rotation ðC2;jÞ axes perpendicular to this major axis. In total there
are 2n symmetry operations. A star structure has the same appear-
ance before and after the transformation by applying any of these
symmetry operations.

Consider a specific set of elements (nodes or members) of a
structure with symmetry G. If one element in a set can be trans-
formed to all of the other elements of that set by the symmetry
operations in G, then this set of elements are said to belong to
the same orbit. A structure can have several different orbits of
elements.

In contrast to prismatic structures, which have only one orbit of
nodes, there are two orbits of nodes in star structures – boundary
nodes and centre nodes, as shown in Fig. 2:

� There are 2n ‘boundary’ nodes arranged in two horizontal circles
of radius R around the vertical z-axis; there is a one-to-one cor-
respondence between the boundary nodes and the symmetry
operations. (When there is a one-to-one correspondence
between elements and symmetry operations, the orbit is called
a regular orbit.)

� There are two ‘centre’ nodes that lie on the centres of the two
horizontal circles; the cyclic (n-fold) rotation operations do not
change the locations of these nodes, while the twofold rotation
operations swap their positions.

Thus, there are in total 2nþ 2 nodes. The two horizontal circles
containing the boundary nodes are at z ¼ �H=2, and the centre
nodes are also at z ¼ �H=2, as shown in Fig. 2(c).

There are three orbits of members: radial cables, vertical cables
and struts. The members in each orbit have the same length and
internal force, and therefore, the same force density (ratio of inter-
nal force to length). Each of the boundary nodes in a circle is con-

nected by a ‘radial’ cable to a centre node. Hence, there are 2n
radial cables, and each symmetry operation transforms a radial
cable into one of the other radial cables; i.e., there is a one-to-
one correspondence between the radial cables and the symmetry
operations (the radial cables form a regular orbit). Each boundary
node is connected by a strut and a ‘vertical’ cable to boundary
nodes in the other circle. Thus, there are only n vertical cables,
and n struts: there is a one-to-two correspondence between the
vertical cables (or struts) and the symmetry operations. Each ver-
tical cable and strut intersects one of the twofold horizontal rota-
tion axes, and this twofold operation transforms this vertical
cable (or strut) into itself.

It is possible to have different connectivities of the vertical
cables and struts for any n > 3. We use the notation Dv

n to describe
the connectivity of a star tensegrity with Dn symmetry, where v de-
scribes the connectivity of the vertical cables, assuming that con-
nectivity of struts is fixed. The boundary nodes in the upper and
lower circles are, respectively, numbered as N0;N1 . . . ;Nn�1 and
Nn;Nnþ1 . . . ;N2n�1, and the upper and lower centre nodes are num-
bered as N2n and N2nþ1, respectively. We describe the connectivity
of a reference node N0 as follows – all other connections are then
defined by the symmetry.

(1) Without loss of generality, we assume that a strut connects
node N0 in the upper circle to node Nn in the lower circle.

(2) A radial cable in the upper circle connects node N0 to the
centre node N2n, and a radial cable in the lower circle con-
nects node Nn to the centre node N2n þ 1.

(3) A vertical cable connects node N0 in the upper circle to node
Nnþv in the lower circle. We restrict 1 < v < n=2 (choosing
n=2 < v < n would give essentially the same set of struc-
tures, but in a reflection symmetry with respect to the plane
z ¼ 0).

The numbering of nodes of two example structures with D5

symmetry, D1
5 and D2

5, is shown in Fig. 3. Node N0 is connected
by a strut to node N5, and by a vertical cable to node N6 for D1

5,
and to node N7 for D2

5.

Fig. 2. The dihedral star tensegrity structure D1
4. R and H are the radius of the circle of boundary nodes and height of the structure, respectively.

Fig. 1. Tensegrity structures that are of the same dihedral symmetry D3. The thick lines represent struts, and the thin lines represent cables.
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