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a b s t r a c t

General solutions are derived to the two-dimensional Eshelby’s problem of an inclusion of arbitrary
shape embedded in one of two imperfectly bonded anisotropic piezoelectric half-planes. The inclusion
undergoes uniform eigenstrains and eigenelectric fields. In this work four different kinds of imperfect
interface models with vanishing thickness are considered: (i) a compliant and weakly conducting inter-
face, (ii) a stiff and highly conducting interface, (iii) a compliant and highly conducting interface, and (iv)
a stiff and weakly conducting interface. Furthermore the obtained general solutions are illustrated in
detail through an example of an elliptical inclusion near the imperfect interface. It is observed that the
full-field expressions of the three analytic function vectors characterizing the electroelastic field in the
two piezoelectric half-planes including the elliptical inclusion can be elegantly and concisely presented
through the introduction of an integral function. We also present the tractions and normal electric dis-
placement along a compliant and weakly conducting imperfect interface induced by the elliptical inclu-
sion. It is found that the imperfection of the interface has no influence on the leading term in the far-field
asymptotic expansion of the tractions and normal electric displacement along the compliant and weakly
conducting interface induced by an arbitrary shaped inclusion. The far-field expansions of the analytic
function vectors in the two imperfectly bonded half-planes for an arbitrary shaped inclusion are also
derived. Some new identities and structures of the matrices Ni and Nð�1Þ

i for anisotropic piezoelectric
materials are obtained.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The Eshelby’s problem of an inclusion with eigenstrains (or
transformation strains) has been a topic in micromechanics for
more than fifty years (Eshelby, 1957; Mura, 1987). When address-
ing the three-dimensional Eshelby’s problem, the Green’s function
approach is prevalent (Eshelby, 1957; Mura, 1987; Nozaki and
Taya, 2001). However when discussing two-dimensional (2D)
Eshelby’s problem in isotropic or anisotropic solids, the complex
variable method is more effective (see for example Jaswon and
Bhargava, 1961; Bhargava and Radhakrishna, 1964; Willis, 1964;
Yang and Chou, 1976, 1977; Ru, 2000, 2001; Pan, 2004; Jiang and
Pan, 2004; Wang et al., 2007). It has been found in recent years that
studies on Eshelby’s problem are essential in understanding the
behaviors of quantum dots and quantum wires in nanocomposite
solids (see recent reviews by Ovid’ko and Sheinerman, 2005 and
Malanganti and Sharma, 2005).

When addressing the inclusion problems in a two-phase infinite
medium (say with a flat interface), it is found that the perfect inter-

face assumption was adopted in the majority of the previous studies
(see for example, Zhang and Chou, 1985. Yu and Sanday, 1991; Jiang
and Pan, 2004). In a recent study, Wang et al. (2007) considered a 2D
thermal inclusion of arbitrary shape embedded in one of two imper-
fectly bonded isotropic elastic half-planes by using Muskhelishvili’s
complex variable method (Muskhelishvili, 1963). The imperfect
interface in that study was simulated by using the linear spring layer
with vanishing thickness. However, the corresponding Eshelby’s
problem for two imperfectly bonded dissimilar anisotropic piezo-
electric half-planes still remains a challenging problem.

It is of interest to point out also that so far various interface mod-
els have been proposed to simulate an interphase layer with finite
thickness (Needleman, 1990; Benveniste and Miloh, 2001; Benven-
iste and Baum, 2007; Bertoldi et al., 2007a,b; Benveniste, 2006,
2009), to account for damage (for example, micro-cracks and mi-
cro-voids) occurring on the interface (Fan and Sze, 2001), and to
study their influence on the effective properties of the composites
(Lu and Lin, 2003; Wang and Pan, 2007) and on the interfacial wave
propagation (Melkumyan and Mai, 2008). Nondistructive evalua-
tion methods were also proposed to detect and characterize the
interface imperfection (Nagy, 1992; Hu and Nagy, 1998). It was
reported that the effect of interfacial stress, defects, impurities,
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and electrodes on the variation of polarization in ferroelectric thin
films could be significant (Lu and Cao, 2002). However, as expected
that if the piezoelectricity of an interphase layer is taken into consid-
eration (Benveniste, 2009), the scenarios of the imperfect interface
will become more complex in view of the fact that now the interface
has imperfection in both elasticity and dielectricity.

In this work we consider the 2D problem of an Eshelby inclu-
sion of arbitrary shape with uniform eigenstrains and eigenelectric
fields embedded in one of two bonded anisotropic piezoelectric
half-planes by means of the Stroh formalism (Suo et al., 1992;
Suo, 1993; Wang, 1994; Chung and Ting, 1996; Ru, 2000, 2001).
In extending previous works (Ru, 2001; Pan, 2004; Jiang and Pan,
2004; Wang et al., 2008), the two anisotropic piezoelectric half-
planes are now bonded through a thin anisotropic piezoelectric
layer. It is found that closed-form solutions can be derived when
the middle piezoelectric layer is replaced by an imperfect interface
with vanishing thickness. The imperfect interface models dis-
cussed in this work can be classified into the following four differ-
ent kinds:

(i) Compliant and weakly conducting interface. This imperfect
interface is based on the assumption that tractions and
normal electric displacement are continuous across the inter-
face, whereas the elastic displacements and electric potential
undergo jumps on the interface which are proportional to the
interface tractions and normal electric displacement.

(ii) Stiff and highly conducting interface. This imperfect inter-
face is based on the assumption that displacements and
electric potential are continuous across the interface,
whereas tractions and normal electric displacement undergo
jumps on the interface which are proportional to certain sur-
face differential operators of the interface displacements and
electric potential.

(iii) Compliant and highly conducting interface. This imperfect
interface is based on the assumption that tractions and tan-
gential electric field are continuous across the interface,
whereas the elastic displacements and charge potential
undergo jumps on the interface which are proportional to
the interface tractions and tangential electric field.

(iv) Stiff and weakly conducting interface. This imperfect interface
is based on the assumption that displacements and charge
potential are continuous across the interface, whereas trac-
tions and tangential electric field undergo jumps on the inter-
face which are proportional to certain surface differential
operators of the interface displacements and charge potential.

Our theoretical development demonstrates that the parameters
in all the four kinds of imperfect interface models can be explicitly
expressed in terms of the electroelastic moduli and the thickness of
the piezoelectric layer.

2. The Stroh formalism for anisotropic piezoelectric materials

In the following we will present two different schemes of the
Stroh formalism. Scheme 1 of the Stroh formalism will be adopted
in the analyses of a compliant and weakly conducting interface
(Section 3), and a stiff and highly conducting interface (Section
4). Scheme 2 will be adopted in the analyses of a compliant and
highly conducting interface (Section 5), and a stiff and weakly con-
ducting interface (Section 6).

2.1. Scheme 1 of the Stroh formalism

The basic equations for an anisotropic piezoelectric material can
be expressed in a fixed rectangular coordinate system xiði ¼ 1;2;3Þ
as

rij ¼ Cijkluk;l þ ekij/;k; Dk ¼ ekijui;j � �kl/;l;

rij;j ¼ 0; Di;i ¼ 0;
ð1Þ

where repeated indices mean summation, a comma follows by
i ði ¼ 1; 2; 3Þ stands for the derivative with respect to the ith spatial
coordinate; ui and / are the elastic displacement and electric poten-
tial; rij and Di are the stress and electric displacement; Cijkl; �ij and
eijk are the elastic, dielectric and piezoelectric coefficients,
respectively.

For 2D problems in which all quantities depend only on x1 and
x2, the general solutions can be expressed as (Suo et al., 1992;
Wang, 1994; Ting, 1996)

u ¼ u1 u2 u3 /½ �T ¼ AfðzÞ þ AfðzÞ;
U ¼ U1 U2 U3 u½ �T ¼ BfðzÞ þ BfðzÞ;

ð2Þ

where

A ¼ a1 a2 a3 a4½ �; B ¼ b1 b2 b3 b4½ �;
fðzÞ ¼ f1ðz1Þ f2ðz2Þ f3ðz3Þ f4ðz4Þ½ �T ;
zi ¼ x1 þ pix2; Imfpig > 0; ði ¼ 1� 4Þ;

ð3Þ

with

N1 N2

N3 NT
1

� �
ai

bi

� �
¼ pi

ai

bi

� �
; ði ¼ 1� 4Þ ð4Þ

N1 ¼ �T�1RT ; N2 ¼ T�1; N3 ¼ RT�1RT � Q ; ð5Þ

and

Q ¼ Q E e11

eT
11 ��11

" #
; R ¼ RE e21

eT
12 ��12

" #
; T ¼ TE e22

eT
22 ��22

" #
; ð6Þ

ðQ EÞik ¼ Ci1k1; ðREÞik ¼ Ci1k2; ðTEÞik ¼ Ci2k2; ðeijÞm ¼ eijm: ð7Þ

In addition the extended stress function vector U is defined, in
terms of the stresses and electric displacements, as follows:

ri1 ¼ �Ui;2; ri2 ¼ Ui;1; ði ¼ 1� 3Þ
D1 ¼ �u;2; D2 ¼ u;1:

ð8Þ

Here we can call u a charge potential (Suo, 1993). Due to the fact
that the two matrices A and B satisfy the following normalized
orthogonal relationship:

BT AT

BT AT

" #
A A
B B

" #
¼ I; ð9Þ

then three real Barnett–Lothe tensors S, H and L can be introduced

S ¼ ið2ABT � IÞ; H ¼ 2iAAT
; L ¼ �2iBBT : ð10Þ

During this investigation, the following identities will also be
utilized:

2AhpaiA
T ¼ N2 � iðN1Hþ N2STÞ;

2AhpaiB
T ¼ N1 þ iðN2L � N1SÞ;

2BhpaiB
T ¼ N3 þ iðNT

1L � N3SÞ;
ð11Þ

where h�i is a 4�4 diagonal matrix in which each component is var-
ied according to the Greek index a (from 1 to 4).

It can also be easily checked that

Nð�1Þ
1 Nð�1Þ

2

Nð�1Þ
3 Nð�1ÞT

1

" #
ai

bi

� �
¼ 1

pi

ai

bi

� �
; ði ¼ 1� 4Þ ð12Þ

where

Nð�1Þ
1 ¼ �Q�1R; Nð�1Þ

2 ¼ �Q�1; Nð�1Þ
3 ¼ T� RT Q�1R: ð13Þ

The detailed structures and identities of Ni and Nð�1Þ
i ði ¼ 1; 2; 3Þ for

Scheme 1 can be found in Appendix A.
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