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a b s t r a c t

We propose in this article to consider the limit behavior of the Koiter shell model when one of the char-
acteristic length of the middle surface becomes very large with respect to the other. To do this, we per-
form a dimensional analysis of Koiter formulation which involves dimensionless numbers characterizing
the geometry and the loading. Once reduced to a one-scale problem corresponding to thin-walled beams
(long cylindrical shell), using asymptotic expansion technique, we address the limit behavior of Koiter
model when the aspect ratio of the shell tends to zero. We prove that at the leading order, Koiter shell
model degenerates to a one dimensional thin-walled beam model corresponding to the Vlassov one.
Moreover, we obtain a general analytical expression of the geometric constants involved, that improves
the empirical expression given by Vlassov.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Thin structures (plates, shells, beams and thin-walled beams)
are widely used in industries because they provide a maximum
of stiffness with a minimum of weight. Among thin-structures,
we classically distinguish plates (with zero curvature), shells (shal-
low and curved shells), beams and thin-walled beams. Thin-walled
beams are at the cross of shells and classical beams (with full
cross-section): they can be seen equivalently as beams whose pro-
file of a cross-section is thin, or as very long shells.

Classical one-dimensional or two-dimensional models of plates,
shells, beams and thin-walled beams were obtained historically
using a priori kinematics and statics assumptions in the three-
dimensional equilibrium equations (Koiter, 1960; Novozhilov,
1959; Vlassov, 1962). More recently, asymptotic approaches1 en-
abled to justify rigorously most of these classical models (Ciarlet
and Destuynder, 1979; Destuynder, 1985; Sanchez-Palencia,
1989a,b, 1990; Hamdouni and Millet, 2003a,b; Rigolot, 1977; Marigo
et al., 1998. However, in spite of all these works, the Koitershell
model was never justified by asymptotic approach2 although it is
one of the most used for computing linear elastic shell problems.

A general feature of these asymptotic approaches (according to
boundary conditions), is that in the asymptotic behavior of the var-
iational displacement approach, penalty terms naturally emerge,
leading to a limit problem in a constrained sub-space. Generally,
the sub-space so defined by the penalty terms, corresponds to
the searched classical kinematics (Kirchhoff-Love in plate theory,
Novozhilov–Donnell for shallow shells, or pure bendings for geo-
metrically non-rigid shells).

The reference model for thin-walled beams in linear elasticity is
the Vlassov model3 (Vlassov, 1962), historically established using a
priori kinematics and statics assumptions. Similar a priori assump-
tions are used in recent works dealing with thin walled beam theory
and applications (Kim and Kim (2005), Bottoni et al. (2005), El Fatmi
(2007)).

In the literature, there exists only a few works on the rigorous
justification of Vlassov model using asymptotic methods. First re-
sults were obtained in (Rodriguez and Viaño, 1995, Rodriguez
and Viaño, 1997, Trabucho and Viaño, 1996), using an approach
based on an expansion at the second order with respect to the
diameter of the beam, to obtain an enriched model. Then in a sec-
ond time, the thickness is assumed to tend to zero: that leads to a
thin-walled beam model similar to Vlassov one.However, it is well-
known that these two operations do not commute and the result
depends on the choice made.4

Afterwards, a justification of Vlassov model from the asymp-
totic expansion of the three-dimensional elasticity equations was
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1 Note that surfacic approaches also exist but are not considered in this paper. They
generally need also some a priori assumption for the constitutive law of the structure
considered (Valid, 1995).

2 Indeed, the Koiter model contains both membrane and bending effects coupled at
different order of magnitude.

3 Which is a one-dimensional model composed of four differential equations.
4 This is a classical result in homogenization of periodic structures (Caillerie, 1984,

Lewinski, 1991).
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proposed in (Grillet et al., 2000, Hamdouni and Millet, in press). In
this work, the width and the thickness of the profile tend together
to zero. This way, for thin-walled beams with open strongly bent
cross-section, the asymptotic model obtained differs slightly from
Vlassov one: a supplementary term coupling bending and twist re-
mains in the bending reduced equations. In the same manner, an
asymptotic thin-walled beam model was obtained for shallow pro-
files (Grillet et al., 2005), and an extension to the non-linear case
was proposed in (Grillet et al., 2004). In (Volovoi and Hodges,
2000), the authors proposed an anisotropic thin-walled beam mod-
el obtained from the Koiter model5 using the variational-asymptotic
method. Finally, let us also notice the works of Diaz and Sanchez-
Palencia (2007), where convergence results to a thin-walled beam
model for shallow profiles was established starting from Novozhi-
lov–Donnell model.

In this paper, we address the limit behavior of Koiter shell mod-
el when one of the characteristic dimension of the middle surface
becomes much larger than the other. We prove in particular that
the Koiter model degenerates to a one dimensional thin-walled
beam model corresponding to Vlassov model, when the aspect ra-
tio tends to zero. Moreover, we obtain a general analytical expres-
sion of the geometric constants involved, that improves the
empirical expression given by (Vlassov, 1962).

The paper is organized as follows. Section 2 is devoted to the
formulation of the problem and of the linear Koiter shell model
for a cylindrical shell with open cross-section. Then in Sections 3
and 4, we perform a dimensional analysis of Koiter formulation
that makes naturally appear dimensional numbers characterizing
the geometry and the loading. Once reduced to a one-scale prob-
lem corresponding to thin-walled beams (or to long cylindrical
shells), using asymptotic expansion technique, we examine the
limit behavior of the variational Koiter model when the aspect ra-
tio of the shell tends to zero.6 We shall see that several penalty
terms appears in the weak formulation of the Koiter model, leading
to the classical Vlassov kinematics for thin-walled beams. Thus,
without any a priori assumption, the leading term of the asymptotic
expansion of the displacements is proved to verify the classical Vlas-
sov kinematics. Then, in Section 5, we prove that the constrained
Koiter problem posed in this sub-space of Vlassov kinematics,
degenerates to four ordinary differential equations (in the variable
of the mean fiber of the beam) characterizing the three components
of the displacement, and the twist angle. The limit one-dimensional
beam model so obtained for very long shells in then compared to
Vlassov equilibrium equations, and to the results obtained in (Grillet,
2003; Hamdouni and Millet, in press) from the asymptotic expansion
of the three-dimensional equations of linear elasticity.

2. Description of the problem

2.1. Geometry and parametrization

In all that follows, the dimensional variables will be denoted
with a tilde, whereas the dimensionless one will be denoted with-
out. Moreover, the over-lined functions will denote functions
which depend only on the variable ~y1, associated to the longitudi-
nal direction of the generators of the cylindrical shell (Fig. 1).

Let us consider a linear elastic thin-walled beam with open
cross-section, or equivalently a long cylindrical shell (Fig. 1). It is
described by the open cylindrical middle surface eS and the con-
stant thickness 2h. In this paper, we limit our study to thin-walled
beams with open strongly curved profile, whose curvature is de-

noted ~c and length d. The length of the beam is denoted L and is
assumed to be much longer than the length d of the profile.

Let us consider a cartesian coordinate system ðO; e1; e2; e3Þ
associated with the three-dimensional space, and a local coordi-
nate system ð~p; a1; a2; NÞ associated with each point p of the pro-
file, where a1 ¼ e1 is the direction of the generators (see Fig. 1).
In the case of cylindrical shells, we can always consider a mappingeWð~y1; ~y2Þ of the middle surface eS such as ða1; a2; NÞ is orthonormal,
where ð~y1; ~y2Þ 2 eX denotes the local variables associated with the
parametrization. Consequently, we have aab ¼ dab, and the contra-
variant basis ða1; a2; NÞ confuses with the covariant basis
ða1; a2; NÞ. Therefore, in the next, we will use indifferently the
covariant or the contravariant components of the considered vec-
tor and tensor fields. Vectors will be denoted ~u ¼ eUiei in the carte-
sian basis and ~u ¼ ~uiai in the local basis, with a3 ¼ N. Moreover, the
coordinates of a point ~p ¼ eWð~y1; ~y2Þ will be denoted ð~x1; ~x2; ~x3Þ in
the cartesian basis.

We assume that the shell considered is subjected to forces with
surface densities ~f ¼ ð~f 1;

~f 2;
~f 3Þ, and is fixed or clamped at its two

extremities eC0 and ~C1 corresponding respectively to ~y1 ¼ 0 and
~y1 ¼ L. Moreover, the lateral boundary eCl is free.

2.2. The Koiter shell model

We consider in this paper long cylindrical shells in linear elas-
ticity, whose mechanical behavior is described by the Koiter shell
model. Its variational formulation for a shell with a thickness 2h
subjected to a surface loading ~f classically writes (Destuynder,
1985; Bernadou, 1996; Sanchez-Hubert and Sanchez-Palencia,
1997; Béchet et al., 2008):

Find ~u 2 eV ¼ fH1ð~XÞ � H1ð~XÞ � H2ð~XÞg, ~v satisfying the kine-
matics boundary conditions, such that:

2h
Z
eS Aabkl~cklð~uÞ~cabð~vÞdeS þ 2h3

3

Z
eS Aabkl ~qklð~uÞ~qabð~vÞdeS

¼
Z
eS ~f i ~v ideS 8~v 2 eV ð1Þ

Fig. 1. The thin-walled beam and the used coordinate systems.

5 Note that a different expression from (5) for the tensor of curvature variation is
used.

6 Equivalently when one the two lengths of the middle surface tends to infinity.
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