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a b s t r a c t

Numerical modeling of localization phenomena shows that constitutive equations with internal length
scale are necessary to properly model the post-localization behavior. Moreover, these models allow an
accurate description of the scale effects observed in some phenomena like micro-indentation. This paper
proposes some analytical results concerning a boundary value problem in a medium with microstructure.
In addition to their own usefulness, such analytical solutions can be used in benchmark exercises for the
validation of numerical codes. The paper focuses on the thick-walled cylinder problem, using a general
small strain isotropic elastic second gradient model. The most general isotropic elastic model involving
seven different constants is used and the expression of the analytical solutions is explicitly given. The
influence of the microstructure is controlled by the internal length scale parameter. The classical macro-
stress is no more in equilibrium with the classical forces at the boundary. Double stresses are indeed also
generated by the classical boundary conditions and, as far as the microstructure effects become predom-
inant (i.e. the internal length scale is much larger than the thickness of the cylinder), the macrostresses
become negligible. This leads to solutions completely different from classical elastic ones.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Since many years, the interest for enhanced models is increas-
ing more and more. Many reasons explain this renewal. The
advanced analysis of localization phenomena has shown that con-
stitutive equations with internal length are necessary to properly
model the experimental results involving some localized patterns
(see, for instance, the pioneering works of Aifantis (1984), Bazant
et al. (1984), de Borst and Muhlhaus (1992), Vardoulakis and
Sulem (1995)). Moreover, these models allow to properly describe
scale effects observed in some phenomena like micro-indentation
as described in Nix and Gao (1997), Sulem and Cerrolaza (2002)
and Rashid et al. (2004), or more generally in micro- and nano-
mechanics as detailed in Fleck et al. (1994) and Fleck and Hutchin-
son (1997).

Many enhanced models have been proposed in the literature,
especially within the framework of plastic or damage theories. In
this paper, we focus first on general theories not closely related
to specific behaviors. These theories based on an enhancement of
the kinematic itself can be traced back to the pioneering works
of Toupin (1962), Mindlin (1964) and Germain (1973b). The start-

ing point of this paper are the materials with microstructure, as de-
fined by Mindlin (1964) and Germain (1973b). On the contrary to
the theories involving a gradient of internal variables, only valid
for some specific behavior modeling, the latter are able to generate
several kinds of constitutive equations like elasticity (Mindlin,
1965) elastoplasticity (Fleck and Hutchinson, 1997; Chambon et
al., 1996, 1998), viscoplasticity (Forest and Sievert, 2006) and also
hypoplasticity and continuum damage (Chambon et al., 1998).
Adding some mathematical constraints to the most general mate-
rials with microstructure yields a large set of models. Among all
these models, the first and most famous one is the Cosserat model
(see Cosserat and Cosserat, 1909). Some of these models have been
extensively studied and it has been demonstrated that general
plastic (see Chambon et al., 2001) or viscoplastic models (see For-
est and Sievert, 2006) can be derived within this framework. Even
large elastoplasticity with multiplicative decomposition of the
deformation gradient can be developed at least in the particular
case of second gradient model (see Chambon et al., 2004). These
models have been used in numerical codes, especially once more
for the particular case of second gradient model (see, for instance,
Chambon et al. (1998) in the one-dimensional case or Shu et al.
(1999) for the elastic two-dimensional case and Matsushima
et al. (2002) for the elastoplastic two-dimensional case).

However, as far as we know, there are very few analytical
results concerning boundary value problems involving media with
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microstructure. This is a problem because, in addition to their own
usefulness, such solutions can be used as benchmark exercises in
order to assess the validation of numerical codes. In one-dimen-
sional cases, analytical solutions for a second gradient medium
are provided in Chambon et al. (1998, 2001). In true bi-dimen-
sional cases, Eshel and Rosenfeld (1970) and Bleustein (1966) pro-
pose the analytical solution of the stress concentration,
respectively, at a cylindrical hole in a field of uniaxial tension
and at a spherical cavity in a field of isotropic tension. Eshel and
Rosenfeld (1975) have also developed the general equations of
axi-symmetric problems in second gradient elastic materials, with-
out giving explicit analytical solutions. Seeking the solution to the
plastic expansion prior to the fully plastic stage, Zhao et al. (2007)
provide a semi-analytical solution for a thick-walled cylinder. In
this paper, the analytical solutions of the thick-walled cylinder
problem in the case of a general small strain isotropic elastic sec-
ond gradient model are given. With respect to the work of Zhao
et al. (2007), it has to be emphasized that there is no restriction
as far as the model is concerned. The more general isotropic elastic
model with seven constants is used. Moreover, in the present pa-
per, the analytical solutions are given explicitly, with the constants
of integration depending on the prescribed boundary conditions.
This allows to generate all the solutions of this problem by solving
a set of four algebraic equations in four unknowns.

The sequence of the paper is as follows. The Section 2 is a pre-
sentation of the notations. Enhanced models require the use of
unusual tensor. Moreover, the problem studied here has to be writ-
ten in cylindrical coordinate system. In order to avoid any confu-
sion, this section devoted to notation is necessary. The Section 3
is a presentation of the media with microstructure and relatives.
This allows us to detail the link between the general media with
microstructure and the second gradient model coming from the
previous one by adding a mathematical constraint on the kine-
matic description. We follow mainly the works of Germain (see
e.g. Germain (1973a,b)). The names of the models used in this pa-
per is our choice. This is necessary since there is no general agree-
ment concerning this point. In Section 4, the equations to be solved
in the case of the thick-walled cylinder are derived for a second
gradient model. The method uses extensively the virtual work
principle. Both balance equations and boundary conditions are ob-
tained. The fifth part deals with the resolution of the ordinary dif-
ferential equation obtained in the previous section. The general
method for the determination of the integration constants (from
the prescribed boundary conditions) is presented. In a sixth part,
some particular solutions corresponding to different boundary
conditions are exhibited. The influence of the internal length scales
introduced either by the model or by the boundary conditions are
also exemplified. Some concluding remarks end up this paper.

2. Notations

Since all along this paper only orthonormal basis are used, it is not
necessary to distinguish between covariant and contravariant com-
ponents. We use then lower case subscripts to denote components of
vectors and tensors. The other indices, namely superscripts, have
other meanings and cannot be confused with the power operation
because this later operation has a specific notation (see the first item
in the following list). Vectors are denoted with arrows. The summa-
tion convention with tensorial indices is used. Let us emphasize that,
using cylindrical coordinates, summation is meaningless for indices
r; h and z, even if they are in lower position.

� ðaÞn means a to the power n.
� dij are the components of the identity tensor (i.e. the Kronecker

symbol).

� xj are the components of the coordinates with respect to an
orthonormal Cartesian basis.

� nj are the components of the unit outward normal of a bounded
domain.

� ui are the components of the displacement field ~u.
� @ia or @iðaÞ in some cases to avoid some ambiguities denotes the

partial derivative of any quantity a with respect to the coordi-
nate i.

� �ij are the components of the gradient of the displacement field
i.e. �ij ¼ @jui.

� eijk are the components of the second gradient of the displace-
ment field i.e. eijk ¼ @kð@juiÞ.

� vijk are the components of the double stress denoted v.
� rij are the components of the macrostress denoted r;rij ¼ rji.
� sij are the components is the microstress denoted s.
� X is a given regular bounded domain.
� @X is the boundary of X assumed to enjoy the C1-continuity

property.
� � denotes virtual kinematical quantities.
� . denotes the scalar product of two vectors, for instance,
~a:~b ¼ aibi.
� : denotes the scalar product of two second order tensors, for

instance, A : B ¼ AijBij.
� ) denotes the scalar product of two third order tensors, for

instance, C)D ¼ CijkDijk.
� r is the gradient operator, which applies either to scalar or vec-

tor fields.
� DðqÞ is the normal derivative of the quantity q, being a scalar or a

vector. This means that: DðqÞ ¼ @jðqÞnj ¼ rq:~n.
� DjðqÞ are the components of the tangential derivative of the

quantity q, being a scalar or a vector. DjðqÞ ¼ @jðqÞ � DðqÞ
nj ¼ ðrq� ðrq:~nÞ~nÞj.

� � denotes the dyadic product.
� ~e denotes generically a basis vector. The basis vectors of the

orthonormal cartesian coordinates are denoted generically ~ei.
The basis vectors of the cylindrical coordinates are denoted:
~er;~eh and ~ez. This means that for any vector ~a we have
~a ¼ ai~ei ¼ ar~er þ ah~eh þ az~ez. It may be worth reminding that
the vectors~er;~eh depend on h and that @h~er ¼~eh and @h~eh ¼ �~er .

� Ri and Re denote, respectively, the inner and outer radii of the
studied thick-walled cylinder.

� For a scalar function u depending only on r, the function v is
defined such that: v ¼ @ruþ u

r ¼ 1
r @rðruÞ.

To make these notations more clear, let us give some examples.
Using orthonormal cartesian coordinates, we have, for instance, for
a vector: r~a ¼ @j~a�~ej ¼ @jðaiÞ~ei �~ej and for a second order tensor
rA ¼ @kA�~ek ¼ @kAij~ei �~ej �~ek.

Using cylindrical coordinates yields the following well-known
results, useful in the following:

r~a ¼ @r~a�~er þ
1
r
@h~a�~eh þ @z~a�~ez ð1Þ

and

rA ¼ @rA�~er þ
1
r
@hA�~eh þ @zA�~ez: ð2Þ

3. Media with microstructure and some relatives

3.1. Media with microstructure

The kinematic of a classical continuum is defined by a displace-
ment field denoted ~u, function of the coordinates. For media with
microstructure, a field of a (not necessarily symmetric) second
order tensor denoted E is added in the kinematic description.
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