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a b s t r a c t

A numerical solution is obtained for the steady-state thermoelastic contact problem in which heat is
conducted between two elastic bodies of dissimilar materials at different temperatures with arbitrary
quadratic profiles. Thermoelastic deformation causes the initially elliptical contact area to be reduced
in size and to become more nearly circular as the temperature difference is increased. There is also a
small but identifiable deviation from exact ellipticity at intermediate temperature differences. An
approximate analytical solution is obtained, based on approximating the contact area by an ellipse.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

When two conforming bodies are placed in contact, the contact
pressure distribution is sensitive to comparatively small changes in
surface profile. Thermoelastic deformations, though generally
small, can therefore have a significant effect on systems involving
contact. For example, Clausing (1966) showed experimentally that
the thermal contact resistance between two contacting bodies var-
ied with the transmitted heat flux as a result of thermoelastically
driven changes in the extent of the contact area.

If the contacting bodies are small, their surfaces can be approx-
imated by quadratic functions in the vicinity of the contact area
and in the absence of thermoelastic deformation, the solution of
the elastic contact problem is given by the classical Hertz theory
(Johnson, 1985). In particular, the contact area is an ellipse whose
ellipticity and orientation are unique functions of the coefficients
defining the quadratic surfaces and whose linear dimensions vary
with P1=3, where P is the contact force.

If the extremities of the two bodies are now raised to different
temperatures T1; T2, heat will flow through the contact area and
the resulting thermoelastic deformation will influence the contact
area and the contact pressure distribution. This problem was
solved by Barber (1973) for the special case where the bodies are
axisymmetric. In this case, the contact area is always circular and
its radius a for a given contact force decreases with increasing tem-
perature difference, being given by

â3 þ 3Hâ2

2p
¼ 1; ð1Þ

where

â ¼ a
aH
; H ¼ ðd2 � d1ÞðT1 � T2ÞKR

aH
;

1
K
¼ 1

K1
þ 1

K2
;

1
R
¼ 1

R1
þ 1

R2
; ð2Þ

aH is the radius of the isothermal (Hertzian) elastic contact area for
the same contact force P;R1;R2 are the radii of the two contacting
bodies and the distortivity d is defined as

d ¼ að1þ mÞ
K

; ð3Þ

where a; m;K are the coefficient of thermal expansion, Poisson’s
ratio and thermal conductivity. This solution is strictly only applica-
ble when the heat flows into the body with the higher distortivity
and hence the dimensionless parameter H > 0, since for the oppo-
site direction of heat flow, a small annulus of imperfect thermal
contact is developed at the edge of the contact area (Barber,
1978; Kulchytsky-Zhyhailo et al., 2001).

In this paper, we use a numerical method to determine the
effect of thermoelastic deformation for the more general Hertzian
case where the bodies have general quadratic shapes and the iso-
thermal contact area is elliptical. We shall show that the contact
area becomes smaller and also more nearly circular as the temper-
ature difference is increased. We shall also develop an approximate
analytical solution to the problem, using an approach proposed by
Yevtushenko and Kulchytsky-Zhyhailo (1996).
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2. Statement of the problem

We consider the problem in which two thermally conducting
elastic bodies are pressed together by a force P, whilst their
extremities are maintained at temperatures T1 and T2, respectively.
Frictionless contact conditions are assumed and heat flow between
the elastic bodies is only permitted to take place by conduction
through the contact area A. As in the axisymmetric case, we restrict
attention to the case where the heat flows into the more distortive
material and hence ðT1 � T2Þðd1 � d2Þ < 0.

2.1. The heat conduction problem

The temperature at the point defined by coordinates ðx; yÞ on
the surface of body i can be written as

Tiðx; yÞ ¼
1

2pKi

Z Z
qðn;gÞdndg

r
þ Ti ð4Þ

where q is the heat flux directed into the body and

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� nÞ2 þ ðy� gÞ2

q
: ð5Þ

In the absence of surface tractions, this heat flux would also cause
thermoelastic displacement wi in the inward normal direction given
by (Barber, 1971)

wiðx; yÞ ¼
di

2p

Z Z
qðn;gÞ lnðrÞdndg; ð6Þ

where we have omitted a rigid-body displacement.
Continuity of heat flux and temperature at the contact area then

leads to the integral equation

DT � T1 � T2 ¼
1

2pK

Z Z
A

qðn;gÞdndg
r

; ð7Þ

where K is defined in Eq. (2). This equation serves to determine the
heat flux q, which is here taken as positive in the direction from
body 1 to body 2. Once q is determined, the differential thermoelas-
tic expansion can then be determined from Eq. (6) as

w1ðx; yÞ þw2ðx; yÞ ¼
ðd2 � d1Þ

2p

Z Z
qðn;gÞ lnðrÞdndg: ð8Þ

2.2. The contact problem

We suppose that the two contacting bodies have profiles de-
fined by the functions g1ðx; yÞ; g2ðx; yÞ, as shown in Fig. 1, so that
the initial gap between the undeformed bodies is

g0ðx; yÞ ¼ g1ðx; yÞ þ g2ðx; yÞ: ð9Þ

As in the Hertzian theory, we assume that the contact area is suffi-
ciently small to permit this expression to be represented by the
quadratic function

g0ðx; yÞ ¼
x2

2RI
þ y2

2RII
; ð10Þ

where RI;RII are the principal radii of curvature of the combined
profile, as defined by Eq. (4.3) of Johnson (1985).

If the bodies are now pressed together, a contact pressure pðx; yÞ
will be developed in the contact area, which will generate elastic
normal surface displacements

uiðx; y;0Þ ¼
1� m2

i

pEi

Z Z
pðn;gÞdndg

r
ð11Þ

directed into the respective bodies i ¼ 1;2, where Ei is Young’s mod-
ulus of the contacting body i.

The final gap between the bodies is given by

gðx; yÞ ¼ g0ðx; yÞ þ u1ðx; yÞ þ u2ðx; yÞ þw1ðx; yÞ þw2ðx; yÞ þ d;

ð12Þ

where d is an unknown rigid body displacement. The contact prob-
lem can then be stated by noting that the gap is zero by definition in
the contact area and positive outside, leading to the unilateral con-
tact problem

gðx; yÞ ¼ 0; pðx; yÞ > 0; ðx; yÞ 2 A; ð13Þ
pðx; yÞ ¼ 0; gðx; yÞ > 0; ðx; yÞ R A: ð14Þ

Combining Eqs. (8), (10)–(14), we then have

1
pE�

Z Z
A

pðn;gÞdndg
r

þ ðd2 � d1Þ
2p

Z Z
A

qðn;gÞ lnðrÞdndg

¼ d� g0ðx; yÞ; ðx; yÞ 2 A
> d� g0ðx; yÞ; ðx; yÞ R A; ð15Þ

where

1
E�
¼ 1� m2

1

E1
þ 1� m2

2

E2
: ð16Þ

The corresponding total force is then given by

P ¼
Z Z

A
pðn;gÞdndg: ð17Þ

The integral equations (7) and (15) serve to determine the heat flux
q and the contact pressure p, whilst Eq. (17) and the inequality in
Eq. (15) determine the extent of the contact area A.

2.3. Dimensionless formulation

The number of independent parameters can be reduced by
using an appropriate dimensionless representation. We first define
two length scales R; aH through the relations

2
R
¼ 1

RI
þ 1

RII
; aH ¼

ffiffiffiffiffiffiffiffiffi
3PR
4E�

3

r
ð18Þ

Fig. 1. Initial gap between two bodies.

4074 Y.H. Jang et al. / International Journal of Solids and Structures 46 (2009) 4073–4078



Download	English	Version:

https://daneshyari.com/en/article/278846

Download	Persian	Version:

https://daneshyari.com/article/278846

Daneshyari.com

https://daneshyari.com/en/article/278846
https://daneshyari.com/article/278846
https://daneshyari.com/

