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a b s t r a c t

Long term dynamics of a class of mechanical systems is investigated in a computationally efficient way.
Due to geometric complexity, each structural component is first discretized by applying the finite ele-
ment method. Frequently, this leads to models with a quite large number of degrees of freedom. In addi-
tion, the composite system may also possess nonlinear properties. The method applied overcomes these
difficulties by imposing a multi-level substructuring procedure, based on the sparsity pattern of the stiff-
ness matrix. This is necessary, since the number of the resulting equations of motion can be so high that
the classical coordinate reduction methods become inefficient to apply. As a result, the original dimen-
sion of the complete system is substantially reduced. Subsequently, this allows the application of numer-
ical methods which are efficient for predicting response of small scale systems. In particular, a systematic
method is applied next, leading to direct determination of periodic steady state response of nonlinear
models subjected to periodic excitation. An appropriate continuation scheme is also applied, leading to
evaluation of complete branches of periodic solutions. In addition, the stability properties of the located
motions are also determined. Finally, respresentative sets of numerical results are presented for an inter-
nal combustion car engine and a complete city bus model. Where possible, the accuracy and validity of
the applied methodology is verified by comparison with results obtained for the original models. More-
over, emphasis is placed in comparing results obtained by employing the nonlinear or the corresponding
linearized models.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

There are many occasions in engineering practice, where there
is a strong interest in determining and studying the long term
behavior of a structural or mechanical system, which is subjected
to periodic excitation. In such cases, the main interest lies mostly
in locating and investigating periodic steady state response. A typ-
ical example is the production of response spectra, which are used
in order to detect structural or acoustical resonances (Craig, 1981;
Kropp and Heiserer, 2003) or to predict fatigue failure of critical
structural parts (Lutes and Sarkani, 1997; Benasciutti and Tavo,
2005). When the dynamical system resulting after the modeling
possesses linear characteristics, there are standard methods that
can lead to this information (Rao, 1990). In cases where the dimen-
sion of the models considered becomes excessive, due to the many
geometrical details that need to be included in order to cover crit-
ical design needs, the volume of the calculations can become pro-
hibitive quite frequently. In such cases, application of appropriate
dimension reduction methods in either the time or the frequency
domain becomes necessary (Craig, 1981; Cuppens et al., 2000).

However, more difficulties arise when nonlinearities are present.
In particular, for small scale nonlinear systems subjected to peri-
odic external excitation there is a lot of analytical and numerical
work referring to their long term response (Doedel, 1986; Nayfeh
and Balachandran, 1995). Among other things, it is well known
by now that these systems can exhibit many types of periodic
motion as well as more complex behavior, including quasi-periodic
and chaotic response. On the other hand, little is still available on
capturing long term dynamics for large scale nonlinear systems
(Fey et al., 1996; Verros and Natsiavas, 2002).

The main objective of the present work is to develop and apply
a systematic methodology leading to a direct determination of
periodic steady state response of periodically excited complex
mechanical systems. Here, the term complex refers to two charac-
teristic properties of the class of systems examined. The first level
of complexity is related to the large number of the corresponding
equations of motion. In fact, the detailed geometrical discretization
of some of the structural substructures, based on the application of
the finite element method (Zienkiewicz, 1986), leads to a large
number of equations of motion. As a consequence, in many cases
it may not be feasible even to carry over the evaluation of the
dynamic quantities needed for the transformations leading to the
classical dimension reduction methods (Fey et al., 1996; Chen
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et al., 1998). The second level of complexity is related to the non-
linearities associated with the system response. This poses severe
restrictions in the applicability of most of the available and com-
monly employed methods. On the positive side, a good feature of
the class of systems examined is that the nonlinear characteristics
are associated with a relatively small number of degrees of free-
dom of the class of dynamical systems examined.

Based on the localized nature of the nonlinear action, the basic
idea of this work is to first reduce the dimension of all the linear
components of the structural system examined by applying an
appropriate coordinate transformation. In particular, the reduction
method applied is based on an automatic multi-level substructur-
ing (Bennighof et al., 2000; Bennighof and Lehoucq, 2004). Apart
from increasing the computational efficiency and speed, the reduc-
tion of the system dimensions makes amenable the subsequent
application of numerical techniques for determining the dynamic
response of complex systems, which are applicable and efficient
for low order systems. For instance, this method has already been
applied successfully to the solution of the real eigenproblem and
the prediction of periodic response of large scale linear models
with nonclassical damping (Kim and Bennighof, 2006; Papalukopo-
ulos and Natsiavas, 2007), large order gyroscopic systems (Elssel
and Voss, 2006) and broadband vibro-acoustic simulations of vehi-
cle models (Kropp and Heiserer, 2003). In addition, the same meth-
od has also facilitated determination of the transient response of
large scale nonlinear models (Papalukopoulos and Natsiavas,
2007; Theodosiou and Natsiavas, 2009).

In the present work, the same multi-level substructuring meth-
od is coupled with an appropriate numerical procedure in order to
determine periodic steady state motions of the models examined,
resulting in response to periodic excitation in a direct manner
(Doedel, 1986). This coupling takes into account and exploits the
characteristics of the general class of mechanical systems consid-
ered. Moreover, a suitable method is also applied, based on classi-
cal Floquet theory and leading to determination of the stability
properties of the located periodic motions (Nayfeh and Mook,
1979). Finally, the methodology developed is complemented by a
continuation method, yielding complete branches of periodic mo-
tions over a specified frequency interval (Ragon et al., 2002). The
final outcome is expected to provide valuable information and in-
sight to engineers dealing with the analysis and design of complex
mechanical systems.

The validity and effectiveness of the methodology developed is
illustrated and verified by presenting a selected set of numerical
results. More specifically, some typical results are presented first
for a detailed finite element model of a crankshaft, belonging to
an internal combustion engine of a commercial car. Then, response
spectra for a quite involved city bus model are also determined and
presented. The results obtained are useful in assessing the dynamic
response of the mechanical systems examined. In both cases, par-
ticular emphasis is placed on identifying and evaluating effects
caused by the nonlinear action in the dynamics, in comparison
with similar predictions of the linear theory.

The organisation of this paper is as follows. First, the character-
istics of the class of mechanical models examined are presented in
the following section. Then, the basic steps of the methodology
developed, including both the application of the coordinate reduc-
tion and the direct determination of the periodic steady state
response, are summarised in the third and fourth section, respec-
tively. Next, the dynamic response of two example models sub-
jected to periodic external excitation is investigated. Where
possible, the accuracy and effectiveness of the present methodol-
ogy is established by comparison of results obtained for the
reduced and the corresponding complete dynamical models. The
work is completed by summarizing the highlights in the last
section.

2. Class of mechanical models examined

Accurate prediction of the dynamic response of mechanical
systems requires frequently the development and examination of
geometrically detailed dynamical models. On the one hand, this
leads to a quite large set of equations of motion. The situation be-
comes more complicated when the systems are forced to operate
in conditions involving activation of nonlinear characteristics. On
the other hand, the information extracted from the systematic
prediction of the dynamic response is essential and valuable in per-
forming efficiently other useful studies, as well, related to fatigue,
acoustics, identification, optimization and control of a system.

Typically, a complex mechanical system is composed of several
structural components. Based on strict design requirements on
accuracy, these components are usually discretized geometrically
by a relatively large number of finite elements (Bathe, 1982;
Hughes, 1987). In many cases, this gives rise to a dynamical system
with an excessive number of degrees of freedom. For all practical
purposes, the model of each mechanical substructure can be as-
sumed to possess linear properties. However, the elements con-
necting the system substructures are typically characterized by
strong nonlinear action. Taking all the above into account, the
equations of motion of the general class of dynamical systems con-
sidered in this work can be put in the compact matrix form

M
_

€xþ C
_

_xþ K
_

xþ p
_
ðx; _xÞ ¼ f

_

ðtÞ; ð1Þ

where all the unknown coordinates are included in the vector

xðtÞ ¼ ð x1 x2 . . . xn ÞT ;

while M
_

; C
_

and K
_

are the mass, damping and stiffness matrix of the
system, respectively. These quantities include contribution from all
the structural components of the system. Moreover, the elements of
vector p

_
ðx; _xÞ include the contribution of the nonlinear terms arising

from the action of the coupled dynamical system, while vector f
_

ðtÞ
represents the action arising from the external forcing.

Besides the large number of degrees of freedom, the level of dif-
ficulty in determining the dynamic response of the class of systems
examined increases considerably when nonlinearity effects be-
come important. However, an attractive feature of these systems
is that their nonlinearities usually appear mainly at a relatively
small number of places, involving a small portion of the degrees
of freedom. This makes possible the application of special tech-
niques, which are appropriate for systems with local nonlinearities.
Namely, for such systems it is possible to reduce significantly the
number of the original degrees of freedom by applying suitable
coordinate reduction methods (Craig, 1981; Fey et al., 1996; Verros
and Natsiavas, 2002). Apart from increasing the computational effi-
ciency and speed, the reduction of the system dimensions makes
amenable the application of several numerical techniques, which
are applicable and efficient for low order dynamical systems.

The dimension of the class of systems examined in the present
work can be so high, that ordinary coordinate reduction methods
may not be numerically efficient to apply. For this reason, a special
coordinate reduction method is applied instead (Bennighof et al.,
2000; Bennighof and Lehoucq, 2004), whose basic steps are pre-
sented in the following section. This reduction leads to a substan-
tial acceleration of the subsequent calculations. More specifically,
the emphasis of the present study is placed on locating periodic
steady state motions, when the mechanical models examined are
subjected to periodic external excitation.

In general, the long term response of a nonlinear dynamical sys-
tem to periodic excitation can be either regular (periodic or quasi-
periodic) or irregular (chaotic) (Nayfeh and Balachandran, 1995).
Typically, such motions are determined by a direct integration of
the equations of motion, starting from some selected set of initial
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