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a b s t r a c t

In the present work we propose a new thermomechanically coupled material model for shape memory
alloys (SMA) which describes two important phenomena typical for the material behaviour of shape
memory alloys: pseudoelasticity as well as the shape memory effect. The constitutive equations are
derived in the framework of large strains since the martensitic phase transformation involves inelastic
deformations up to 8%, or even up to 20% if the plastic deformation after the phase transformation is
taken into account. Therefore, we apply a multiplicative split of the deformation gradient into elastic
and inelastic parts, the latter concerning the martensitic phase transformation. An extended phase trans-
formation function has been considered to include the tension–compression asymmetry particularly typ-
ical for textured SMA samples. In order to apply the concept in the simulation of complex structures, it is
implemented into a finite element code. This implementation is based on an innovative integration
scheme for the existing evolution equations and a monolithic solution algorithm for the coupled mechan-
ical and thermal fields. The coupling effect is accurately investigated in several numerical examples
including pseudoelasticity as well as the free and the suppressed shape memory effect. Finally, the model
is used to simulate the shape memory effect in a medical foot staple which interacts with a bone segment.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In the last years smart materials have attracted much attention,
especially because of their versatile application in smart structures,
medical devices and actuator systems (e.g. Van Humbeeck, 2001;
Fu et al., 2004; Morgan, 2004). Among these materials, shape
memory alloys, particularly Nickel–Titanium (NiTi) belong to the
most established. In comparison to other metallic materials they
exhibit large inelastic recoverable strains (of the order of 8%)
resulting from the transformation between austenitic and mar-
tensitic phases (see Otsuka and Wayman, 1999). This transforma-
tion may be induced by a change either in the applied stress, the
temperature, or in a combination of both.

From the macroscopic point of view, the behaviour of shape
memory alloys exhibits two major phenomena. The first one is
known as pseudoelasticity which is characterised by nonlinearly
elastic behaviour. Here, very large strains upon loading occur but
full recovery is achieved in a hysteresis loop upon unloading. The
shape memory effect, on the other hand, is accompanied by large
residual strains after loading and subsequent unloading. These
strains are due to the orientation of martensite twins (pseudoplas-
ticity). They may be fully recovered simply by raising the temper-

ature of the body. Additionally, these materials exhibit full
thermomechanical coupling. Thus, the temperature of the alloy
changes upon applied force, and the mechanical response changes
upon temperature deviation.

During the last decade the area of constitutive modelling of
shape memory alloys (SMA) has been the topic of many research
publications. The majority of the published material models can
be classified into three different groups: micromechanically
based approaches, concepts based on statistical thermodynamics
and phenomenological models. Since we already reviewed the
three groups in detail (Reese and Christ, 2008), we now concen-
trate on a literature overview of phenomenological models for
shape memory alloys. We subdivide them into models for the
different phenomena pseudoelasticity and the shape memory
effect as well as finally the tension–compression asymmetry.
We also present existing models which are derived in the frame-
work of large strains. After all, the implementation of the mate-
rial models into a finite element code is surveyed. If the reader is
interested in further research on this topic we recommend Roub-
icek (2005) and Patoor et al. (2006) who give a detailed overview
of micromechanical modelling of shape memory alloys. Lagoudas
et al. (2006) provide a survey of constitutive formulations for
polycrystalline shape memory alloys where a distinction between
the micromechanical and the phenomenological approach is
made.
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The most common material laws for shape memory alloys are
able to describe the effect of pseudoelasticity. In the 1980s (e.g.
Tanaka, 1986) and in the 1990s (e.g. Raniecki et al., 1992; Brinson,
1993) one-dimensional constitutive models were already proposed
to describe the hysteretical behaviour of shape memory alloys dur-
ing the phase transformation from austenite to martensite. From
the late 1990s three-dimensional concepts were developed. Most
of these approaches are structured similarly. They are based on a
macroscopic free energy function (either Gibbs free energy or
Helmholtz free energy) which includes internal variables to
describe the phase transformation. In general, one scalar variable,
the martensitic volume fraction, defines the progress of the phase
transformation and determines its end. Raniecki et al. (1992)
among others derived a relation between the martensitic volume
fraction and the inelastic strain occurring during the phase trans-
formation. By defining the martensitic volume fraction via a norm
of the transformation strain tensor, the three-dimensional charac-
ter of the phase transformation is considered (e.g. Raniecki and
Lexcellent, 1994; Boyd and Lagoudas, 1996).

Patoor et al. (1987) and Achenbach (1989) were the first to sug-
gest an additive decomposition of the martensitic volume fraction
into different variants. Brinson (1993) has introduced this concept
into the phenomenological material modelling. The motivation for
this idea was to introduce the so-called temperature induced mar-
tensite (also known as self-accommodated martensite) which
serves to include the shape memory effect into the material model.
The idea of the additive split of the martensitic volume fraction
was further developed by, for example, Leclercq and Lexcellent
(1996), Lexcellent et al. (2002), Souza et al. (1998), Helm and
Haupt (2003), Christ et al. (2004), Auricchio and Petrini (2004a),
Paiva et al. (2005) and Popov and Lagoudas (2007).

Since the shape memory effect originates from stress orienta-
tion of the martensite twins and subsequent heating, the temper-
ature plays an important role. The simplest way to include the
temperature in the modelling is to hold it fixed at each point of
the structure and to assume a homogeneous temperature field.
This would result in a one-sided thermomechanical coupling
where only the influence of the temperature on the deformation
is taken into account. But important physical effects as heat con-
duction and heat generation due to energy dissipation during the
phase transformation, can only be considered if full thermome-
chanical coupling (including the solution of the first law of thermo-
dynamics) is incorporated. The finite element implementation of
thermomechanically coupled models were accomplished by Lim
and McDowell (2002), Auricchio and Petrini (2004b), Migliavacca
et al. (2004), Iadicola and Shaw (2004), Popov and Lagoudas
(2007) and Helm (2007b). However, all publications mentioned
are limited to small strains.

Phenomenological large strain concepts were proposed by Lev-
itas (1998), Auricchio and Taylor (1997), Masud et al. (1997), Ides-
man et al. (1999), Auricchio (2001), Anand and Gurtin (2003),
Müller and Bruhns (2006), Vieille et al. (2007), Ziolkowski (2007),
Helm (2007a) and Reese and Christ (2008). Thermomechanical
coupling is additionally included in the models of Müller and Bru-
hns (2006) and Ziolkowski (2007). Particularly the concepts of
Auricchio and Taylor (1997), Auricchio (2001), Vieille et al.
(2007) and Reese and Christ (2008) focus on the finite element
implementation of the constitutive model. The above mentioned
articles do not focus on the shape memory effect. Hence, it seems
that none of the presented models is fully capable of combining all
important features as pseudoelasticity, the shape memory effect,
thermomechanical coupling and finite deformations in only one
model and additionally offers an efficient and robust finite element
implementation.

In the present work we seek to make another step forward on
this way. For this purpose, we enhance the model proposed in

Reese and Christ (2008) by an additive split of the martensitic vol-
ume fraction z into an oriented martensite fraction zo and an unori-
ented martensite zu, also known as self-accommodated martensite.
The split allows us to describe the martensite orientation below
the martensite finish temperature as well as the thermally driven
phase transformation from oriented martensite to austenite by
heating above the austenite start temperature As. Additionally,
we extend the approach to thermomechanical coupling by apply-
ing the balance of internal energy. Hence, an interaction between
the mechanical and the thermal quantities is enabled. The model
is derived in the framework of large strains based on the multipli-
cative decomposition of the deformation gradient into an elastic
part and a transformation part where the latter stands for the
inelastic deformation produced during the phase transformation
or the orientation of martensite twins, respectively. The numerical
implementation of this model is carried out by means of an inte-
gration algorithm based on the exponential map which preserves
the volume during the phase transformation.

2. Kinematic framework

2.1. Deformation gradients

The proposed material model is derived in the framework of fi-
nite deformations. This implies the use of the deformation gradient
F ¼ @x=@X, where the vector x ¼ x̂ðX; tÞ (t: time) denotes the posi-
tion of a point in the current configuration and X the position of the
same point in the reference configuration. The determinant of the
deformation gradient J ¼ det F describes the volume change of the
material during the deformation. As in classical plasticity, we as-
sume an intermediate state which is stress free and decouples
the elastic deformation from the deformation during the martens-
itic phase transformation Ft ¼ F�1

e F. The subscript e stands for the
elastic deformation and t for the transformation part. As shown in
earlier investigations (e.g. Fu et al., 1992) the phase transformation
in polycrystalline shape memory alloys does not emerge spontane-
ously. During the forward transformation the stress is slightly
increasing whereas during the backward transformation the stress
is decreasing. This characteristic can be described phenomenolog-
ically by introducing an additional deformation gradient
Ftd
¼ F�1

te
Ft which is multiplicatively coupled to the deformation

during the phase transformation. Since the phase transformation
in NiTi approximately proceeds without a volume change (see
Bhattacharya, 1992), the determinant of the transformation defor-
mation gradient Jt ¼ det Ft has to remain unchanged so that Jt � 1
holds.

It should be emphasised that the triple multiplicative split
F ¼ Fe Fte Ftd

has been used already several times, for the first time
probably in the work of Lion (2000) to model kinematic hardening,
see also Dettmer and Reese (2004), Vladimirov et al. (2008).
According to Lion (2000) the elastic part of the inelastic deforma-
tion (in the present contribution denoted by Fte ) results from dislo-
cation-induced lattice rotations and stretches on the microscale,
whereas the inelastic part (here defined by Ftd

) relates to local plas-
tic deformations coming from inelastic slip on crystallographic slip
systems. Helm (2007a) suggests to transfer the idea of the triple
multiplicative split on phase transformations. The same approach
is taken by Reese and Christ (2008).

2.2. Strain tensors and its time derivatives

Since the deformation gradient F is not a suitable strain mea-
sure we use the Green–Lagrange strain tensor E ¼ ðC� 1Þ=2, where
C ¼ FT F denotes the right Cauchy–Green tensor. In the same
manner we introduce the transformation strain tensor
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