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a b s t r a c t

Singularity theory is applied for the study of the characteristic three-dimensional tensegrity-cytoskeleton
model after adopting an incompressibility constraint. The model comprises six elastic bars intercon-
nected with 24 elastic string members. Previous studies have already been performed on non-con-
strained systems; however, the present one allows for general non-symmetric equilibrium
configurations. Critical conditions for branching of the equilibrium are derived and post-critical behav-
iour is discussed. Classification of the simple and compound singularities of the total potential energy
function is effected. The theory is implemented into the cusp catastrophe for the case of one-dimensional
branching of the buckling-allowed tensegrity model, and an elliptic umbilic singularity for compound
branching of a rigid-bar model. It is pointed out that singularity studies with constraints demand a quite
different mathematical approach than those without constraints.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The concept of tensegrity was initially apprehended and materi-
alized in the sculptures of the artist Kenneth Snelson in 1948 and
later patented by the architect R. Buckminster Fuller as a new meth-
od for designing geodesic structures (Fuller, 1961). Tensegrities are
reticulated structures forming a highly geometric combination of
bars and strings in space. In fact, tensegrity is a portmanteau word
for ‘‘tension-integrity” referring to the integrity of structures as
being based in a synergy between balanced continuous tension
(elastic strings) and discontinuous compression (elastic bars) com-
ponents. Pre-existing tensile stress in the string members, termed
prestress, is required even before the application of any external
loading in order to maintain structural stability. There already ex-
ists an extensive literature regarding the mechanics and advanced
mathematics used for the integral description of these structures
(e.g., Roth and Whiteley, 1981; Motro, 1992; Connelly and Back,
1998; Skelton et al., 2002; Lazopoulos, 2005a; Pirentis and
Lazopoulos, 2006; Williams, 2007). The principal characteristics
of tensegrity architecture are: the fact that elastic bars bear com-
pressive load whereas elastic strings bear tensional load; prestress
provides structural stability (self-equilibrated system); structural
rigidity is proportionate to prestress; and the manifestation of
‘‘action at a distance” (Stamenović, 2006).

Almost three decades ago, the hypothesis that the cytoskeleton
(CSK) is organised according to the principles of tensegrity archi-
tecture was introduced (Ingber et al., 1981; Ingber and Jamieson,
1985). The CSK is the intracellular filamentous biopolymer
network whose constant remodelling directly affects almost all
functions of living cells (Suresh, 2007). In the course of several
years an ever increasing number of experimental observations
have established that adherent cell behaviour is controlled and
determined by its physical deformation and, especially, the defor-
mation of the CSK. In the cellular tensegrity model and in terms of
cell physiology, elastic bars correspond to microtubules while elas-
tic strings correspond to the actin and intermediate filaments net-
work (Stamenović, 2006, and references therein for an excellent
overview). It has been found that the aforementioned mechanical
properties of tensegrity systems are characteristic of the CSK as
well (Ingber, 1993, 1998, 2008; Volokh et al., 2000; Stamenović,
2006). Actually, some of these properties were initially predicted
by the tensegrity model and were later verified in laboratory
experiments as mechanical properties of the CSK (Ingber, 2008).

In a series of previous theoretical studies by the authors, several
aspects and properties of tensegrity architecture and CSK model-
ling have been discussed (Lazopoulos, 2005a,b; Pirentis and
Lazopoulos, 2006; Lazopoulos and Lazopoulou, 2006a,b). The par-
ticular tensegrity model of this study has been used time and again
during the last two decades for the investigation of the application
of tensegrity architecture in CSK mechanics (Ingber, 1993; Stame-
nović et al., 1996; Coughlin and Stamenović, 1997, 1998; Wendling
et al., 1999; Volokh et al., 2000; Wang and Stamenović, 2000).
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Appropriate modifications of the model have been presented in the
literature in order to address specific problems from a broad range
of phenomena related to the CSK (Stamenović, 2006; Ingber, 2008).
However, previous studies by the authors and others did not take
explicitly into account the fact that cells are almost incompress-
ible. Here, motivated by this observation and in order to mimic cel-
lular behaviour we integrated to the model a condition (constraint)
that prohibits volumetric change, albeit, allows deformation.

In its initial unloaded configuration the tensegrity model under
examination presents three-dimensional symmetry. Under the
application of external equitriaxial loading and when the critical
value is reached, the structure loses symmetry similarly to the case
of Rivlin’s cube (Rivlin, 1948, 1974; Ogden, 1997; Golubitsky et al.,
1988). Two kinds of instabilities appear: the first is related to the
global (overall) instability of the model and the second is due to lo-
cal Euler buckling of the bars; both will be discussed later in the
text along with the emergence of subsequent compound instabili-
ties. The current tensegrity model, although simple, is a system
with multiple degrees of freedom and presents a rich mechanical
response that cannot be described in its entirety by force equilib-
rium concepts alone. To this end, an integral study of the model
behaviour is effected by employing Singularity Theory for con-
strained systems – emerging from differential topology (Porteous,
1971, 1994). Even though formal branching theory demands such
difficult tasks as the elimination of passive coordinates and the
normalization of the total potential energy function (Thompson
and Hunt, 1973; Vainberg and Trenogin, 1974; Troger and Steindl,
1991), the free coordinate bifurcation procedure elaborated here
does not set these requirements. Applying the presented theory
(Lazopoulos, 1994; Lazopoulos and Markatis, 1994), the various
singularities of the total potential energy function exhibiting sim-
ple or compound branching of its equilibrium paths, under the
influence of any constraints, can be investigated. In this formula-
tion, explicit formulae of the critical conditions for branching are
naturally derived and the classification of singularities provides
the number and stability study of the post-critical equilibrium
paths. The current treatment is an extension of previous work on
the subject by including systems with constraints.

2. The tensegrity CSK model and its total potential energy
function

The system under investigation comprises six inextensible elas-
tic bars interconnected with a total of 24 elastic strings in the fash-
ion shown in Fig. 1. Although the bars acquire an inextensible
elastic curve, they may be buckled. In absence of external loading
the initial geometrical configuration is dominated by prestress;
specifically, the tensile forces carried by the strings are balanced
by compression in the bars (Stamenović and Coughlin, 1999;
Lazopoulos and Lazopoulou, 2006b).

In the initial configuration the self-equilibrated structure is
fully symmetric and the origin of the Cartesian coordinate system
is located in its centre. In fact, the three axes are aligned to the
directions of the three pairs of parallel bars while the length of
all string segments is the same. Following simple geometrical con-
siderations it is straightforward to show that both the length of the
string segments and the distance between the parallel bars are pro-
portionate to the length of the bars (or, respectively, their chord-
length if the bars are already buckled) (Kenner, 1976; Coughlin
and Stamenović, 1997). The structure is subjected to a general
three-dimensional loading such that forces of magnitude
TX=2; TY=2; TZ=2 are applied at the endpoints of the bars (AA)
and (A0A0), (BB) and (B0B0), (CC) and (C0C0), respectively (cf. Fig. 1).
Thus, the parallel bars in each pair are either pulled apart or
pushed towards each other, depending on whether the forces are

extensive or compressive with respect to the overall system. Evi-
dently, this results to a concerted change in all length values (cur-
rent configuration). In the current configuration we call: sX ; sY ; sZ

the distances between the parallel bars (or chord-lengths) (AA)
and (A0A0), (BB) and (B0B0), (CC) and (C0C0), respectively; l1 the length
of the string segments (AB), ðA0BÞ; ðAB0Þ; ðA0B0Þ; l2 the length of the
string segments (AC), ðA0CÞ; ðAC0Þ; ðA0C0Þ; and l3 the length of the
string segments (BC), ðB0CÞ; ðBC 0Þ; ðB0C0Þ. Then, simple geometrical
arguments yield (Coughlin and Stamenović, 1997):
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where L1; L2 and L3 are the current chord-lengths corresponding to
the bars (AA) and (A0A0), (BB) and (B0B0),(CC) and (C0C0), respectively. If
the deflection of the given buckled bar is defined by:

wiðsÞ ¼ fi � sin
p � s
L0

� �
; i ¼ 1;2;3; ð4Þ

where s and L0 are the arc-length and length of the inextensible bar,
respectively, and fi � 1, then the chord-length is expressed as:
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Now, if q denotes the curvature radius, the non-linear curvature is
approximated as:
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Hence, the strain energy of each buckled bar is expressed as:
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; i ¼ 1;2;3; ð7Þ

Fig. 1. Symmetric configuration of the tensegrity-cytoskeleton model.
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