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a b s t r a c t

The advancing, frictional contact problem for a rigid pin indenting an infinite plate with a circular hole is
considered. The formulation is general, and considers remotely applied plate-stresses in addition to pin
loads. Using the theory of generalized functions, it is found that the governing equation in full sliding is a
singular integro-differential equation (SIDE). Partial-slip behavior is governed by an implicit, coupled sin-
gular integral equation (SIE) pair. Numerical solutions are presented for both types of problems. It is
found that the contact tractions in monotonic loading become independent of the coefficient of friction
above a certain threshold value. Finally, problems involving typical ‘fretting-type’ pin loads with and
without remote-stresses are also investigated, revealing remarkable effects of the degree of conformality
and load path on the steady-state traction distributions.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Conformal contacts are important for a wide range of engineering
applications, like fasteners. The distinguishing feature of this class of
contacts is that the contacting bodies may not be treated as half-
spaces because the contact size is significant when compared to
the radius of curvature. Classically, two regimes have been identified
for such contacts: ‘cradling’ and ‘inclusion with remote-loading’
which roughly correspond to conformal advancing and conformal
receding contacts respectively. A significant body of literature exists
in the frictionless case for both regimes, with a wide variety of meth-
ods being used for formulation. These include (1) Persson’s direct
formulation1 using potentials for the disk and plate; (2) Dual-series
techniques (Noble and Hussain, 1969) (3) Complex analytic stress-
continuation (with contributions from Wilson, England and others)
and (4) The recent method of To et al. (2007) which leads to approxi-
mate solutions, but may be used even when the plate is finite. The
reader is referred to Gladwell (1980) and Ciavarella et al. (2006) for
a more comprehensive list of references for frictionless problems.

By contrast, the literature for conformal contact problems with
friction is somewhat sparse. Ho and Chau (1997) determined stress
concentrations when body forces act on a (neat-fit) rivet loading an
infinite plane. Iyer (2001) performed an FEM analysis for the case
with finite plates and friction and discussed the applicability of
various closed-form approximations. Finally, Hou and Hills
(2001) obtained numerical solutions to the very special problem
in which the pin and hole are elastically similar and almost con-
forming, using a distributed dislocation approach. In this instance,
the gap between the two bodies was treated as an arc-shaped dis-
continuity in an otherwise continuous plate.

The present work treats advancing conformal contact problems
with friction under general loading conditions i.e. pin loads and re-
mote stresses applied in any path. The formulation is closed in the
sense that it does not use infinite series, makes no assumptions
regarding the tractions by way of symmetry or interactions and
models the problem as exactly as possible within the limits of
plane elasticity. In addition, a rapid numerical solution scheme
for partial slip problems is also discussed.

While generalizing the problem in the directions mentioned,
it is a useful simplification to regard the disk as rigid2; the con-
tact pair is, nonetheless, a dissimilar one and may be considered a
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2 It has been pointed out to us that this is a good approximation in applications
since the pin/disk is usually less compliant than the plate/lug.
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prototypical case of advancing conformal contacts with friction. The
present work also provides a useful template to proceed in case this
simplification no longer holds.

2. Displacement fields caused by circumferential point loads

As a starting point, one begins with the complex potentials for a
point load applied to the edge of a circular hole of radius a in an
infinite elastic plane, with vanishing stresses and rotation at infin-
ity. These were first derived by Rothman (1950) but he did not
publish the displacement fields, which are surprisingly hard3 to
come by, so a brief derivation is presented here. The algebra is sim-
plified somewhat by considering the normal and tangential load
cases separately. Further, the load may be considered to act on a cir-
cumferential point located at an angle n ¼ 0 and the result easily
generalized for other angles. For a normal load N (positive outward)
acting at an angle n ¼ 0, the potentials are4

XðzÞ ¼ N
2p

� logðz� aÞ þ j logðzÞ
ðjþ 1Þ

� �
ð1Þ

xðzÞ ¼ N
2p

z logðz� aÞ � z logðzÞ
jþ 1
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The displacements in polar coordinates are given by

2Gður þ iuhÞ ¼ e�ih jXðzÞ � zX0ð�zÞ �x0ð�zÞ
n o

ð3Þ

Differentiating and substituting the potentials in Eq. (3) gives
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On the surface, z�z ¼ a2; z ¼ aeih and �z ¼ ae�ih so that, after simplify-
ing and ignoring rigid body terms the surface displacements (indi-
cated with a tilde) are given by

2Gð~ur þ i~uhÞ ¼
Ne�ih

2p
�jþ 1

2
logð2� 2 cosðhÞÞ þ ðj� 1Þi½A1 � A2�

� �
ð5Þ

where

A1 � A2 ¼ Arg
1
2
� i

2
cot

h
2
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ð6Þ

It is seen that A1 � A2 is a periodic linear function with discontinu-
ities at 0;�2mp; it may be replaced by its values in a single period
(suitably selected) with no loss of generality. Separating real and
imaginary components gives the following surface displacements

2G~ur ¼
N

2p
ðj�1ÞsinðhÞ½A1�A2��

jþ1
2

cosðhÞ logð2�2cosðhÞÞ
� �

ð7Þ
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When the force acts at a point on the circumference situated at an
angle n rather than 0,

2G~uN
r ¼

N
2p
ðj� 1Þ sinðh� nÞAðh; nÞ � jþ 1

2
cosðh� nÞLðh; nÞ

� �
ð9Þ

2G~uN
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N
2p
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2

sinðh� nÞLðh; nÞ þ ðj� 1Þ cosðh� nÞAðh; nÞ
� �
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where the following notation is used5

Aðh; nÞ � A1 � A2 ¼
h� n

2
� p

2
sgnðh� nÞ ð11Þ

Lðh; nÞ � logð2� 2 cosðh� nÞÞ ð12Þ

It is possible to proceed analogously for the case of a tangential
point load T (clockwise positive) acting on a point on the circumfer-
ence, in which case

2G~uT
r ¼

T
2p
ðj� 1Þ cosðh� nÞAðh; nÞ þ jþ 1

2
sinðh� nÞLðh; nÞ

� �
ð13Þ
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3. Derivation of governing equations - full sliding

The full sliding advancing conformal contact problem may be
interpreted (for example) as the moment-induced sliding of a disk
(or shaft) of a radius slightly smaller than that of the hole under the
applied pin-loads and remote stresses. In this case, the moment/
torque at which the onset of sliding occurs is an unknown and
must be determined as part of the solution.

Let the disk have radius RD and the hole radius R, where RD < R.
In the undeformed configuration, the disk and hole are as shown in
Fig. 1. In this state, the (first-order correct) gap function, h0ðhÞ, is

h0ðhÞ ¼ ðR� RDÞð1þ sinðhÞÞ ð15Þ
If the disk is now rotated by a small amount, and pressed into the
elastic space by a rigid-body displacement vector V with horizontal
component C0x and vertical component D (positive downward), the
new gap function, hdðhÞ is

hdðhÞ ¼ ðR� RDÞð1þ sinðhÞÞ � C0x cosðhÞ þ D sinðhÞ ð16Þ
Inside the contact, the overclosures thus produced should be re-
lieved by elastic displacements so that the gap function, hðhÞ ¼ 0.
Now the gap function anywhere is defined as

hðhÞ ¼ hdðhÞ þ ~ur ð17Þ

so that inside the contact

Fig. 1. Conformal contact.

3 In sharp contrast to the ubiquitous Flamant solution
4 Note that Rothman’s x0ðzÞ represents what one would consider xðzÞ in the

canonical Kolosov–Muskhelishvili formulation 5 Again, the domain of the function Aðh; nÞ must be suitably selected.
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