
On non-physical response in models for fiber-reinforced hyperelastic materials

J. Helfenstein a,*, M. Jabareen a,b, E. Mazza a,c, S. Govindjee a,d

a Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology Zurich, Tannenstrasse 3, 8092 Zurich, Switzerland
b Faculty of Civil and Environmental Engineering, Technion, Israel Institute of Technology, Haifa 32000, Israel
c EMPA, Swiss Federal Laboratories for Materials Testing and Research, Überlandstrasse 129, 8600 Dübendorf, Switzerland
d Department of Civil Engineering, University of California, 709 Davis Hall, Berkeley, CA 94720-1710, USA

a r t i c l e i n f o

Article history:
Received 16 December 2009
Received in revised form 31 March 2010
Available online 13 April 2010

Keywords:
Hyperelasticity
Anisotropy
Fiber-reinforced
Quasi-incompressible
Volume growth

a b s t r a c t

Soft biological tissues are sometimes composed of thin and stiff collagen fibers in a soft matrix leading to
a strong anisotropy. Commonly, constitutive models for quasi-incompressible materials, as for soft bio-
logical tissues, make use of an additive split of the Helmholz free-energy into a volumetric and a devia-
toric part that is applied to the matrix and fiber contribution. This split offers conceptual and numerical
advantages. The purpose of this paper is to investigate a non-physical effect that arises thereof. In fact,
simulations involving uniaxial stress configurations reveal volume growth at rather small stretches.
Numerical methods such as the Augmented Lagrangian method might be used to suppress this behavior.
An alternative approach, proposed here, solves this problem on the constitutive level.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Soft matter often exhibits complex mechanical behavior related
to inhomogeneity, anisotropy and (near) incompressibility. This is
the case for soft biological tissues that are sometimes characterized
by strong anisotropy due to the presence of thin and stiff collagen
fibers in a soft extracellular matrix. Examples for this are ligaments
and tendons, arterial walls or the annulus fibrosus. Under physio-
logical conditions these tissues might undergo large deformations,
necessitating a mechanical description in the framework of non-
linear continuum mechanics. Numerical methods are often used
to simulate and understand their mechanical behavior. This has
motivated a number of recent studies on constitutive modeling ap-
proaches for fiber-reinforced hyperelastic materials.

Classical hyperelastic models, such as the polynomial forms
(Rivlin and Saunders, 1951) or the Ogden model (Ogden, 1972)
were designed for the modeling of isotropic materials. Later, these
models were modified to allow for an additive split of the Helm-
holz free-energy into a volumetric and a deviatoric part, to some
extent motivated by the multiplicative decomposition of the defor-
mation gradient introduced by Flory (1961). It was shown by Eh-
lers and Eipper (1998) that, if this split is applied to materials
not restricted to (nearly) incompressible behavior, it might lead
to unphysical responses in uniaxial tension.

Anisotropy itself can be modeled by explicitly including a fiber
contribution in the strain energy formulation. Thereby, the idea of
the additive split might also be applied to the fiber contribution. To
our best knowledge, the first fiber-reinforced model using this
additive split assumption for (nearly) incompressible materials
was proposed by Weiss et al. (1996). In 2000, Holzapfel et al. pub-
lished a model that has since then become very popular in simula-
tions involving anisotropic biological tissues.

The purpose of this paper is to investigate a non-physical effect
in the application of the additive split to fiber-reinforced (nearly)
incompressible materials. In fact, numerical simulations involving
uniaxial stress configurations lead to volume growth when using
the models by Weiss et al. (1996) or Holzapfel et al. (2000). To pre-
vent this behavior, numerical costly methods such as the Aug-
mented Lagrangian method (Simo and Taylor, 1991) might be used.

An alternative approach, as proposed here, is to avoid the mul-
tiplicative decomposition of the deformation gradient in the fiber
contribution. Although several authors (Holzapfel et al., 2004;
Schröder et al., 2005) have already proposed model formulations
without this decomposition, no statements were found in the pa-
pers that this was motivated by the problems reported in the pres-
ent work. In general, no criterion is proposed for or against this
decomposition being applied to the fiber contributions to the
free-energy. Rather it seems the invariants and their modified
equivalents are considered ‘‘to be equivalent” in case of incom-
pressibility. Though it will be shown in this paper that the choice
of either one has an influence on the stress and stiffness terms of
the fiber contribution.

Our results are also compared with the predictions from the
model proposed by Rubin and Bodner (2002), which avoids the
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volumetric split for the fiber contribution and uses an additive split
in the log-energies.

2. Methods

2.1. Continuum mechanics background

For Green elastic materials the Cauchy (true) stress r and the
spatial stiffness c can be obtained from a strain energy density
functionW (the Helmholz free-energy per unit reference volume) by

r ¼ 2
J
v�

@W½C�
@C

� �
; c ¼ 4

J
v�

@2W½C�
@C@C

" #
; ð1Þ

respectively.1 Here, v*[] is the push-forward operator to bring the
material derivatives to the spatial configuration. W depends solely
on the right Cauchy–Green deformation tensor C = FTF, where F is
the deformation gradient and ()T depicts the usual transpose of a
second order tensor.

Anisotropy due to fibers can be included by use of structural
tensors

AðiÞ ¼ fðiÞ � fðiÞ; ð2Þ

where f(i) is a normalized vector describing the orientation of the ith
fiber family in the reference configuration. The principles of mate-
rial frame indifference and invariance under transformations that
respect the material symmetries lead to a representation of W that
depends only on the so called mixed invariants of C and A(i):

W ¼ W½I1; I2; I3; IðiÞ4 � ð3Þ

with

I1 ¼ tr½C�; ð4aÞ

I2 ¼
1
2

tr½C�ð Þ2 � tr½C2�
� �

; ð4bÞ

I3 ¼ det½C� ¼ J2; ð4cÞ
IðiÞ4 ¼ fðiÞ � CfðiÞ ¼ C : AðiÞ ¼ ðfðiÞÞ2: ð4dÞ

J = det[F] denotes the volume ratio and IðiÞ4 represents the square
of the stretch f(i) of fiber family i. Note that the set of invariants Ic,
c = 1, . . . ,4 is not the full set of invariants of the tensors C and A(i)

(Antman, 2005) but includes the commonly used ones.
The right Cauchy–Green tensor C can be split multiplicatively

into a deviatoric part C and a spherical part Cvol (Flory, 1961):

C ¼ CvolC ¼ J2=3IC: ð5Þ

Using this split it is common to write the strain energy W in an
uncoupled form

W ¼ U½J� þW I1; I2; IðiÞ4

h i
ð6Þ

in which U is the response of the material to volume changes and W
depends only on the distortional part of the deformation. I1; I2 and
IðiÞ4 are the invariants of the deviatoric part C of the right Cauchy–
Green deformation tensor C. It should be noted that, in general,
the invariant IðiÞ4 no longer represents the square-stretch of fiber
family i; rather,

IðiÞ4 ¼ J�2=3ðfðiÞÞ2: ð7Þ

The split (6) enables distinct modeling of high resistance to vol-
umetric deformation and low resistance to distortional deforma-

tion (as in the case of nearly incompressible materials). Sansour
(2008) shows that the additive split is a consequence of the
assumption that the pressure is solely a function of J.

In case of fiber-reinforced materials W can be divided into Wgs

and Wf for the energy contributions of the matrix (‘‘ground sub-
stance”) and the fibers, respectively:

W½C;Ai� ¼ U½J� þWgs½I1; I2� þWf ½IðiÞ4 �: ð8Þ

In the following, three structural, anisotropic constitutive mod-
els are presented. For ease of reading their notation has been unified
from their original presentations. The closed forms of the stress and
material stiffness tensors are given in the original papers.

2.1.1. Model proposed by Weiss et al. (1996)
Weiss et al. (1996) suggested a constitutive model that uses a

strain energy function of the form (8). The individual contributions
are given by

U½J� ¼ j
2
ðln½J�Þ2; ð9aÞ

Wgs½I1; I2� ¼ w1 I1 � 3
� �

þw2 I2 � 3
� �

; ð9bÞ

Wf ½IðiÞ4 � ¼
w3

w4

Xn

i¼1

ew4 IðiÞ4 �1ð Þ � IðiÞ4

w4
� �

ð9cÞ

where j is the small strain bulk modulus and the wc, c = 1, . . . , 4, are
material parameters. w4 is introduced in the present work as an
additional parameter that allows one to shift the onset of the fiber
response and thus to fit the model to the selected uniaxial response
(w4 = 1 [�] retrieves the original model). Note that the contribution
of the ground substance is described by a Mooney–Rivlin model (a
special case of the polynomial materials Rivlin and Saunders, 1951)
with the small strain shear modulus l = 2(w1 + w2).

2.1.2. Model proposed by Holzapfel et al. (2000)
Holzapfel et al. (2000) proposed a model according to Eq. (8) for

modeling the arterial wall. The explicit forms of the energy contri-
butions are given by

U½J� ¼ j
2

J � 1ð Þ2; ð10aÞ

Wgs½I1� ¼
l
2

I1 � 3
� �

; ð10bÞ

Wf ½IðiÞ4 � ¼
h1

2h2

Xn

i¼1

eh2ðI
ðiÞ
4
�1Þ2 � 1

� �
; ð10cÞ

where j, l, h1 and h2 are the small strain bulk and shear moduli and
two material parameters, respectively. The ground substance is
modeled as a Neo-Hookean material.

In both these models the fibers are thought to be active only in
tension and therefore all contributions (energy, stress and stiff-
ness) of fiber family i are set to zero if IðiÞ4 < 1.

2.1.3. Model proposed by Rubin and Bodner (2002)
The model presented by Rubin and Bodner (2002) uses a differ-

ent strain energy function:

W ¼ p
2

expp�1bW � 1
� 	

; ð11Þ

where p is a material constant. bW is the sum of four contributionsbW ¼ bW1½J� þ bW2½I1� þ bW3½fi� þ bW4½a1�: ð12Þ

The functions bWc; c ¼ 1; . . . ; 4, characterize the response to to-
tal dilatation, total distortion, fiber stretching and distortional
deformation of a dissipative component, respectively. bW4 will be
neglected here, reducing the model to pure elastic response:1 Our notation of tensor operators follows Holzapfel (2000).
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