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a b s t r a c t

This paper investigates the dynamic response to a time-harmonic oscillating moving load of a system
comprising a covering layer and half-plane, within the scope of the piecewise-homogeneous body model
utilizing of the exact equations of the linear theory of elastodynamics. It is assumed that the materials of
the layer and half-plane are anisotropic (orthotropic), and that the velocity of the line-located time-har-
monic oscillating moving load is constant as it acts on the free face of the covering layer. Our investiga-
tions were carried out for a two-dimensional problem (plane-strain state) under subsonic velocity for a
moving load in complete and incomplete contact conditions. The corresponding numerical results were
obtained for the stiffer layer and soft half-plane system in which the modulus of elasticity of the covering
layer material (for the moving direction of the load) is greater than that of the half-plane material.
Numerical results are presented and discussed for the critical velocity, displacement and stress distribu-
tion for various values of the problem parameters. In particular, it is established that the critical velocity
of the moving load is controlled mainly with a Rayleigh wave speed of a half-plane material and the exis-
tence of the oscillation of the moving load causes two types of critical velocity to appear: one of which is
less, but the other one is greater than that attained for the case where the mentioned oscillation is absent.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, within the scope of the piecewise-homogeneous
body model and through the employment of the exact equations
of the linear theory of elastic waves the dynamics of a system com-
prising an orthotropic layer and orthotropic half-plane under the
action of an oscillating moving load is studied. Note that this study
is a continuation of that which was made in the paper by Akbarov
and Ilhan (2008) for the case where the external moving load is not
oscillating. At the same time, in that paper the brief review of the
related investigations carried out by Achenbach et al. (1967),
Auersch (2006), Karlström, 2006, Bespalova (2007), Madshus and
Kaynia (2000), Green et al. (1952), Biot (1965), Truestell and Noll
(1965), Guz (1986a,b, 2004), Akbarov and Ozisik (2004), Zhuk
and Guz (2007), Akbarov (2006, 2007a), Yahnioglu (2007) and
many others are given. Moreover in that paper the moving load
problems are classified from various points of view, one of which
is based on the investigative approach.

As a more detailed description and analysis of the classifications
mentioned above and specific approaches were given in the paper
by Akbarov and Ilhan (2008), therefore we will not dwell on those
here. Nevertheless we will cover herein those arising after the
writing of that paper and, where necessary, those that must be
considered again.

In Babich et al. (1986), the dynamical response was considered for
a system consisting of a layer and pre-strained half-plane. The equa-
tion of motion for the covering layer was described by Timoshenko
beam theory, but the equation of motion for the half plane was de-
scribed by three-dimensional linearized theory of elastic waves in
initially stressed bodies (TLTEWISB). The solution to the correspond-
ing boundary value problem was determined by using the exponen-
tial Fourier integral transformation. Corresponding numerical
investigations were made for the case where constitutive relations
for the half-plane material were described in terms of harmonic po-
tential. Moreover, it was assumed that the speed of the moving load
was constant and the subsonic case had been taken into consider-
ation. These numerical investigations led to the further study of
the parameters’ influence on critical velocity in the second study
by Babich et al. (1988) utilizing the complex potentials of TLTEWISB.
In Babich et al. (2008a,b) the foregoing investigations of these
authors are developed for the supersonic moving load acting for
compressible (2008a) and incompressible (2008b) bodies.
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Akbarov et al. (2007) employed the findings of Babich et al.
(1986, 1988) in developing a case where the covering layer is
also strained initially, and where the equation of motion for
this layer is also described by TLTEWISB; from this, the influ-
ence of the problem parameters on the critical velocity was
studied. However, Akbarov et al. (2007) assumed the materials
of the covering and half-plane to be isotropic. This assumption
significantly restricts the theoretical investigations in terms of
controlling the critical velocity values for the moving load and
the stresses acting on the interface plane through the mechan-
ical properties of the layer and half-plane materials. Therefore,
the study by Akbarov and Ilhan (2008) further develops the
investigation in Akbarov et al. (2007) for the case where the
materials of the covering layer and half-plane are anisotropic
(orthotropic). Note that the anisotropy of the covering layer
materials in the aforementioned systems may occur as a result
of oriented reinforcing elements present in these materials. At
the same time, under certain conditions, multi-layered soil
(half-plane) or a multi-layered covering plate can be modeled
as a homogeneous orthotropic material with effective mechani-
cal properties.

Furthermore, it should be noted that the foregoing determina-
tion of a system consisting of a stiffer layer and soft half-space or
soft layer and stiffer half-space is not applicable in cases where
the materials of the covering layer or of the half space are orthotro-
pic, because, in the latter case, there are six independent moduli of
elasticity and many wave speeds associated with these moduli.
Therefore, for cases where the materials of the covering layer or
of the half-space are orthotropic, whether the system consists of
a ‘‘stiffer layer and soft half-space” or ‘‘soft layer and stiffer half-
space” must be indicated. In the aforementioned paper by Akbarov
and Ilhan (2008), within the ‘‘stiffer layer and soft half-space” sys-
tem, the modulus of elasticity of the covering layer material in the
moving load direction is greater than that of the half-plane mate-
rial, and the corresponding numerical results are presented for this
case. These results illustrate the influence of the mechanical prop-
erties of the covering layer material and the influence of the initial
stresses on the values of the moving load’s critical velocity and on
the stresses acting on the interface plane between the layer and
half-plane.

As noted by Hussein and Hunt (2007), Degrande and Schille-
mans (2001), Lefeuve-Mesgouez et al. (2000), Auersch (2008) and
many others, in reality high-speed trains, cars and other high-
speed transportation vehicles modeled as moving loads are accom-
panied by their own oscillations. To determine how these accom-
panying oscillations act on the dynamical response of the system
considered requires corresponding additional investigations. These
investigations are the subject of the present paper; in other words,
in the present paper the investigations carried out in Akbarov and
Ilhan (2008) are developed for time-harmonic oscillating moving
loads. However, in order to focus on the study of the influence of
the aforementioned oscillation of the moving load on the dynamics
of the system considered in the present paper (in contrast with the
paper by Akbarov and Ilhan (2008)) it is assumed that there are not
any initial stresses in the constituents of this system.

Throughout the paper repeated indices indicate a summation
over their ranges. However, underlined repeated indices are not
to be taken as sums.

2. On the formulation of the problem and solution method

The object of the investigation is the same one which is consid-
ered in the paper by Akbarov and Ilhan (2008) (with assumption
rðkÞ;011 ¼ 0, where rðkÞ;011 is an initial stress in the kth component of
the system) and schematically shown in Fig. 1. At the same time,

the notation, the equation of motion, the mechanical and geomet-
rical relations, the contact conditions, the boundary conditions at
x2 ! �1 and the boundary condition at x2 ¼ 0 with respect to
rð1Þ12 which are used and written in the paper by Akbarov and Ilhan
(2008) occur also in the present paper and therefore for reducing
the size of the paper we do not rewrite they here again. However
the boundary condition with respect to rð1Þ22 at x2 ¼ 0 is changed
and has the following form:

rð1Þ22

���
x2¼0
¼ �P0eixtdðx1 � VtÞ ð1Þ
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where cðmÞ12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðmÞ12 =qðmÞ

q
:

In Eq. (2), the upper prime in x1 and x2, and over bar in uðmÞ1 and
uðmÞ2 are omitted. In this case, the boundary condition (1) is replaced
by the following one:

rð1Þ22

���
x2¼0
¼ �P0dðx1Þ ð3Þ

Thus, the other conditions mentioned above are also valid for
the new coordinate system x01 ¼ x1 � Vt; x02 ¼ x2 and for the ampli-
tude of the sought values.

Now we consider the solutions to Eq. (2). For this purpose, as in
the paper Akbarov and Ilhan (2008) we employ the exponential
Fourier transformation with respect to the x1 coordinate defined as

fFðs; x2Þ ¼
Z þ1

�1
f ðx1; x2Þe�isx1 dx1 ð4Þ

Fig. 1. The geometry of the structure of the half-plane covered by the layer.

3874 S. Akbarov, Nihat _Ilhan / International Journal of Solids and Structures 46 (2009) 3873–3881



Download English Version:

https://daneshyari.com/en/article/278936

Download Persian Version:

https://daneshyari.com/article/278936

Daneshyari.com

https://daneshyari.com/en/article/278936
https://daneshyari.com/article/278936
https://daneshyari.com

