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a b s t r a c t

We examine the boundary-due components in the mean modified Green operator integral (Green oper-
ator for short) of an inclusion pattern in distant-contact and contact-connection transitions. The Direct
(RT) and inverse (IRT) Radon Transforms, which allow specification of the different contributions to
the mean Green operator of the pattern in simple geometrical terms, are used. The already well-docu-
mented case of axially symmetric alignments of equidistant identical oblate spheroids, in an infinite
matrix of isotropic (elastic-like or dielectric-like) properties is treated up to infinite alignments and for
any aspect ratio from unity (spheres) to infinitesimal (platelets). Simple closed forms for this mean Green
operator and for its different parts are newly obtained. These closed forms allow an easy parametric study
of the operator variations in terms of the alignment characteristics from distant to contact situations.
From contact to connection of the inclusions, the changes in the Green operator’s contributions are
pointed, what provides relevant operator forms for the connected patterns. These results are of interest
in problems where phase percolation, connectivity inversions or co-continuity are implied.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In heterogeneous structures, where one or several phases are
embedded in a matrix under the form of bounded and separated
domains (inclusions), an effective property (elasticity, conductiv-
ity, . . .) cannot be correctly approached if the inclusion interactions
are ignored, except where concentrations are ‘‘dilute enough”
(Willis and Acton, 1976; Christensen, 1979). For ‘‘high” concentra-
tions, the isolated (one site) inclusion approximation has been sig-
nificantly improved by using either the solution for the pair
interaction problem between two ellipsoids (Berveiller et al.,
1987; Kouris and Tsuchida, 1991; Anttreter and Fisher, 1996) or
statistical estimates that are based on correlation functions of rank
two and more (Davis, 1991; Helsing, 1993; Ponte Castaneda and
Willis, 1995; Kanaun, 2003). However, when inclusions are not
homogeneously or randomly distributed within a matrix, the esti-
mate of the cluster or pattern effects needs to approach some
mean, or effective, interaction contribution in the arrangement
(De Bartolo and Hillberry, 1998; Estevez et al., 1995, 1999). In prac-
tice, it is currently accepted that only the interaction pairs of one
inclusion with its nearest neighbors will significantly affect inclu-
sion clustering. However, as has already been examined by Willis
and Acton (1976) in the case of random arrangements of spheres,

such a simplification remains an approximation even when no long
range order exists. Consequently, this becomes more unlikely for
highly anisotropic spatial distributions of elements in patterns
with a long range order as is the case to be considered in this study
for alignments in a matrix that has isotropic and linear properties.

Applications of this linear ‘‘pair interaction problem” in isotro-
pic media extend to anisotropic materials, with the help of appro-
priate transformation or homogenization methods (Pouya and
Zaoui, 2006; Franciosi et al., 1998; Franciosi and Berbenni, 2008),
as well as to non linear behavior, as in plasticity theory for model-
ing the pile up of martensitic variants (Cherkaoui et al., 2000;
Aubry et al., 2003) or slip bands (Franciosi and Berbenni, 2007,
2008), which are responsible for forest hardening (Kocks et al.,
1991; Mecif et al., 1997). Note that most of these abovementioned
plasticity problems somehow pile flat, platelet-like, inclusions.

These varieties of morphological situations that involve com-
plex patterns can, today, be approached on an individual basis with
numerical calculations. However, the goal of obtaining simpler
expressions for the ‘‘representative operators” that are related to
various inclusion or pattern shapes and matrix property symmetry
is to simplify the numerical implementation or to obtain new ana-
lytical solutions; and this is still a topic of active research (Meisner
and Kouris, 1995; Ju and Sun, 1999; Nakasone et al., 2000; Kushch
et al., 2005; Zheng et al., 2006; Agnolin and Roux, 2008). If the tran-
sition from dilute to concentrated volume fractions of inclusions
has been widely explored, an important and yet unanswered
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question is the specific changes of these operators when inclusions
at contact become a connected cluster. Addressing this is of particu-
lar interest when aiming, for example, to model the evolution of the
effective properties in a material that is submitted to some thermal-
physical-mechanical process that causes one (or several) phase(s) to
change from discontinuous to continuous (or the reverse).

Thus, in support of investigating the operator changes, from dilute
to compact filling and from contact to connection between inclu-
sions, the present paper analytically examines, in detail, the mean
modified Green operator integral (the ‘‘Green operator” or ‘‘operator”
for short) of an axially symmetric alignment. The alignment is of n
equidistant identical oblate spheroids in an isotropic medium, with
essentially elastic-like properties and, secondarily, with dielectric-
like properties. At first, this Green operator, which provides the mean
Eshelby tensor for the considered domains or patterns, is given a sim-
ple and new closed-form solution. This closed-form solution allows
an easy parametric study which helps highlight the properties of
composite materials involving such inclusion patterns.

Now, special attention will be paid to the transition from the con-
tact to the connection of the inclusions; this investigation requires
separately calculating the Green operator at the interior and exterior
points of the bounded single (simply connected) domains and, more
specifically, the boundary-due contributions. Even when taking into
account the various calculation methods used (Fourier transform,
multi-potential modelling, F.E. calculations, etc.), literature that spe-
cifically addresses determining the inclusion ‘‘exterior operators”
remains relatively scarce (Mura and Cheng, 1977; Johnson et al.,
1980; Mura, 1987; Hasegawa et al., 1992; Wu and Du, 1995). In addi-
tion, literature that explains the boundary-due parts, even for simple
patterns, appears to be entirely absent.

This study’s calculations and comparisons, involving interior
and exterior operators of inclusions, are performed using the Ra-
don Transform (RT) method and its inversion formula (Gel’fand
et al., 1966), a widely used method in 2D tomographic analyses
(Natterer, 1986; Ramm and Katsevitch, 1996), but used less often
in the field of 3D solid structure analyses (Wang, 1997; Pan and To-
non, 2000; Franciosi and Lormand, 2004; Franciosi, 2005). One
advantage of the Inverse Radon Transform (IRT) method is that it
provides simple access to the boundary-due part of the Green
operator of a domain; thus, the method is useful when boundary
effects are important, with regards to connectivity, compaction
or debonding considerations (Drissi-Habtia et al., 1999; Martina
et al., 2003; Ricotti et al., 2006), or in the analysis of percolation
events. Using the IRT, closed forms for each (and especially for
the boundary-due) operator part are obtained.

Finally, it is worth specifying that we did not intend to enter the
application domain to estimate the effective properties of the heter-
ogeneous materials of which the patterns discussed here would be
representative. Too many frameworks are likely to be used for this
estimation, as discussed in several books, with different viewpoints,
by Mura (1987), Cherkaev (2000) and Buryachenko (2007). The effec-
tive properties of spheroid alignments have been recently examined
by Buryachenko et al., 2007). We are not saying that the overall pat-
tern operators can be used within any existing framework; they are,
for example, suitable with models such as the one by Ponte Castane-
da and Willis (1995), which accounts for pair correlation functions in
spatial inclusion distributions that have ellipsoidal symmetry. Such
‘‘mean field approximations” have also been proposed for patterns,
as in Bornert et al., 1996) and in Buryachenko (2001). In many cases,
it would be necessary to not only consider a mean pattern operator,
but also the mean operators of each pattern element. The present dis-
cussion focuses on the decomposition of the overall pattern operator
being similar to that of the mean operators of the pattern elements as
it will be exemplified for spheroid alignments.

Section 2 briefly presents the calculation of the Green operator
at the interior and exterior points of an inclusion, using the IRT

method. From its application to calculating the mean operator of
an inclusion pair, as recalled in Section 3, the case of two axially
symmetric oblate spheroids is fully examined, from the sphere
shape to the platelet (laminate) extreme. Section 4 addresses the
mean operator of an aligned assemblage of oblate spheroids, from
spheres to platelets. The noticeable characteristics are also stressed
and discussed. Finally, Section 5 examines the transition from an
alignment at contact to a connected alignment and proposes rele-
vant forms for operators of connected patterns.

2. Interior and exterior inclusion characteristic functions and
Green operators, from the IRT

2.1. Summary of the general IRT framework

Let C, which can either be a four-rank (elasticity-like) or a sec-
ond-rank (dielectric-like) tensor, denote the considered linear
property of an infinite matrix that contains the V inclusion. Take
Cðr� r0Þ to be the related modified Green tensor, which is defined
from the Gðr� r0Þ Green function as:

C : Cðr� r0Þ ¼ C : ð�@@Gðr� r0ÞÞ ¼ �dðr� r0Þ ð1Þ

where ‘‘@@” stands for ‘‘@2=@xp@xq”, which acts on r ¼ ðx1; x2; x3Þ; D is
the Kronecker tensor or unity when C is either a four-rank or a sec-
ond-rank tensor, respectively; and dðrÞ is the delta function in R3.
We a priori denote tV ðrÞ ¼

R
V Cðr� r0Þdr0 as the modified Green oper-

ator integral over V for r,which is either inside or outside V, while

tV ¼ 1
V

R
V tV ðrÞdr is the interior mean (volume average) operator va-

lue; these are thus referred to as the (Green) operator and the mean
(Green) operator, respectively. The related Eshelby and mean Eshelby

tensors for V are defined by EV ðrÞ ¼ C : tV ðrÞ and EV ¼ C : tV , respec-
tively. Thus, V is a general, regular, possibly multiply connected,
bounded domain, whether it is convex or not. The IRT in R3of the

Green operator tV ðrÞ (resp. of the mean Green operator tV over V) is
a weighted angular average of the elementary operators tPðxÞ over
the vectors x ¼ ðh;/Þ of the unit sphere X. This is a result of writing
the following (see Franciosi and Lormand, 2004):

tV
pqjnðrÞ ¼

Z
V
Cpqjnðr� r0Þdr0

¼ 1
8p3

Z
V

Z
K
ððM�1ÞpjðxÞxqxnÞ

���
ðpqÞ;ðjnÞ

exp�iKðr�r0 ÞdK
� �

dr0

¼ 1
8p3

Z
V

Z
X

tP
pqjnðxÞ

Z 1

k¼0
k2exp�iKðr�r0 Þdkdx

� �
dr0

¼
Z

X
tP

pqjnðxÞwV ðx; rÞdx

with x ¼ ðsin h cos /; sin h sin /; cos hÞ; dx ¼ sin hdhd/. Thus, the
following equation is arrived at:

tV ðrÞ ¼
Z

X
tPðxÞwV ðx; rÞdx;

tV ¼ 1
V

Z
V

tV ðrÞdr ¼
Z

X
tPðxÞwV ðxÞdx; ð2Þ

where

tP
pqjnðxÞ¼ ðM�1ÞpjðxÞxqxn

� �
ðpqÞ;ðjnÞ

; MmpðxÞ¼Cmipjxj xi ðiÞ
or
tP

qnðxÞ¼ ðM�1ÞðxÞxqxn

� �
; MðxÞ¼Cijxjxi ðiiÞ

8>><>>: ; ð3aÞ

wV ðx;rÞ¼
1

8p3

Z
V

Z 1

k¼0
k2exp�ikxðr�r0 Þdk

� �
dr0

¼ 1
8p3

Z
V
ð�pÞd00ðx:ðr�r0ÞÞdr0 ¼�s00V ðz;xÞ

8p2 : ð3bÞ
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