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a b s t r a c t

A damage-based cohesive model is developed for simulating crack growth due to fatigue loading. The
cohesive model follows a linear damage-dependent traction–separation relation coupled with a damage
evolution equation. The rate of damage evolution is characterized by three material parameters corre-
sponding to common features of fatigue behavior captured by the model, namely, damage accumulation,
crack retardation and stress threshold. Good agreement is obtained between finite element solutions
using the model and fatigue test results for an aluminum alloy under different load ratios and for the
overload effect on ductile 316 L steel.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The fatigue life of a structure is influenced by mechanical,
microstructural and environmental factors, all of which result in
material damage, typically equated to crack length (Miller, 1991).
Indeed the field of fracture mechanics has had profound influence
on fatigue analysis. For mechanical type loads, fatigue life of a com-
ponent or structure is calculated as the number of loading cycles
needed to grow a pre-existing crack to a predetermined critical
dimension or to nucleate and grow a crack from a notch or other
location of stress concentration.

The focus of this paper is the so-called stage-II fatigue crack
growth, i.e., the stable propagation of a dominant crack. Starting
with the Paris model (Paris and Erdogan, 1963; Paris et al.,
1961), fatigue life predictions have typically been based on equa-
tions relating the stage-II rate of crack growth (da=dN) to the stress
intensity range (DK), also called the driving force, characteristic of
a constant magnitude cyclic applied load and of specimen geome-
try. Here a is the crack length and N is the number of loading

cycles. Attempts to incorporate more complex conditions affecting
the crack growth rate led to models whose parameters depend on
characteristics of the applied load or of the environment, as well as
the redefinition of DK .

The Paris model and similar approaches are valid under the
ideal conditions of linear elastic fracture mechanics (LEFM),
small-scale yielding, constant amplitude cyclic loading and long
cracks. When these conditions are not met, these approaches lose
their predictive capability. In particular, they are unable to model
crack retardation due, for example, to roughness induced crack clo-
sure (Elber, 1971), oxidation, or the presence of a residual stress
field (Noroozi et al., 2008).

We develop a cohesive zone model, i.e., a model of the traction–
separation relationship ahead of the crack tip, capable of macro-
scopically modeling fatigue crack growth. Cohesive zone models
can capture the nonlinear behavior occurring in the process zone
provided that the latter can be considered as a zone of zero thick-
ness. Since they can be paired with a plasticity model in the bulk
material, they can be especially useful in simulating fatigue behav-
ior of materials that violate small scale yielding assumptions at the
crack tip. Their use in fracture problems has become common in
recent years. Cohesive zone models are also useful when microme-
chanical processes acting at a scale smaller than the grid size used
in the finite element analysis affect the rate of crack growth. The
relevant micromechanics can then be incorporated in the cohesive
zone model. This process is sometimes called ‘‘subgrid modeling”.
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Examples are the interaction of asperities as a cause of crack clo-
sure and the effect of residual stresses when the plastic zone is
not adequately resolved. A crack retardation mechanism as intro-
duced in the proposed model can be used to capture these effects.
Subgrid modeling is ideally carried out through multiscale analy-
sis, which is not addressed in this paper. In that light, one could
envision obtaining the parameters of the proposed model from
micromechanical analysis at a smaller scale.

Cohesive zone fatigue models have most commonly been
implemented as cohesive interface finite elements. de Andres
et al. (1999) proposed a bilinear traction–separation relationship,
which unloads to the origin with no cyclic degradation of either
the stiffness or the peak traction. Nguyen et al. (2001) pointed
out that such a model can lead to plastic shakedown that arrests
crack growth after a few cycles. Hence, a distinction between load-
ing and unloading paths is necessary, which allows for subcritical
crack growth. In Nguyen et al. (2001), a cohesive model with an
unloading–reloading hysteresis was developed. In this work, the
stiffness and the peak load degrade proportionally to the unloading
stiffness as the number of cycles increases. Roe and Siegmund
(2001) introduced a damage variable, whose evolution resulted
in the degradation of the cohesive zone traction. The cohesive rela-
tionship under monotonic loading was based on the potential pro-
posed by Xu and Needlemanm (1994). Maiti and Geubelle (2005)
proposed a cohesive model of fatigue fracture in polymeric materi-
als in which the cohesive stiffness evolves as a function of the rate
of opening displacement and of the number of loading cycles since
the onset of failure. Crack retardation or healing due to artificial
crack closure (a wedge introduced in the wake of the crack) was
addressed by these authors in Maiti and Geubelle (2006). Maiti
et al. (2006) incorporated healing kinetics at the atomic level for
a class of self-healing materials.

The proposed cohesive zone model, an earlier form of which
was presented in Ural and Papoulia (2004), is bilinear under mono-
tonic loading and shows a degrading peak traction and stiffness
behavior under cyclic loading due to an evolving damage variable.
The model is a constitutive relationship of the material, i.e., unlike
the Paris and other models, its parameters do not depend on load-
ing characteristics such as the load ratio, defined as the ratio of
minimum to maximum load. Rather, it contains three physically
motivated parameters, which govern crack advance, threshold,
and retardation, respectively. As in Roe and Siegmund (2001), the
model introduces a scalar (energy like) damage variable, governed
by an evolution equation, which provides a phenomenological
framework to account for the nonlinear processes associated with
fatigue failure. Special emphasis is placed on the ability of the
model to capture crack retardation, which is known to depend
on the load ratio. In particular, the damage variable can evolve
nonmonotically; a decrease in damage partially restores the
strength of the material and therefore retards crack growth. How-
ever, we do not specifically attribute crack retardation to any of the
possible physical mechanisms mentioned earlier, namely rough-

ness induced crack closure or the effect of residual stresses. Indeed,
crack retardation and damage nonmonotonicity could even corre-
spond to physical crack healing. Several recent proposals have
been made for self-healing structural materials (White et al.,
2001; Toohey et al., 2007). Regardless of the physical mechanism,
we show that the model captures the effect of mean stress (load ra-
tio) and of overload.

The remainder of the paper is organized in the following manner.
Section 2 presents the details of the proposed cohesive model. Sec-
tion 3 includes a mathematical analysis of well-posedness of the
model. Section 4 presents aspects of the finite element implementa-
tion and some preliminary testing. In Section 5, the predictive capa-
bility of the proposed model is evaluated through two dimensional
finite element simulations of cyclic fatigue tests of A356-T6 com-
pact-tension (CT) specimens at two load ratios. Section 6 illustrates
the ability of the model to capture the effect of overload.

2. A damage-based cohesive model allowing for crack
retardation

We postulate a degrading linear traction–separation relation-
ship of the form

T ¼ FðjÞd; ð1Þ

where j is a damage variable, d is the effective opening displace-
ment, defined in Section 4, and T is a scalar effective cohesive trac-
tion, also defined in Section 4.

The dependence of the elastic coefficient F on j is specified by

FðjÞ ¼ rcð1� jÞ
jðdu � dcÞ þ dc

; ð2Þ

dc is the critical displacement at which the crack initiates and dam-
age starts to accumulate, du is the failure displacement, i.e., the dis-
placement at which the traction becomes zero, and rc is the initial
peak traction of the interface. The traction T is also required to sat-
isfy the inequality T 6 CðjÞ, where CðjÞ is specified by

CðjÞ ¼ rcð1� jÞ: ð3Þ

Under cyclic loading, the model exhibits a degrading peak trac-
tion, i.e., a decreasing value of CðjÞ, and a degrading stiffness, i.e., a
decreasing value of FðjÞ as the value of j increases (Fig. 1), result-
ing in eventual loss of load transmission ability of the interface.
The variable j takes values between 0 and 1 corresponding to no
damage and complete fracture, respectively. The expression pro-
posed in (2) has the desirable property that the elastic coefficient
FðjÞ is strictly decreasing so that the traction T decreases from
rc (when j ¼ 0) to 0 (when j ¼ 1). The ascending and descending
linear branches of the monotonic response are not explicitly de-
fined by the above equations but rather are a consequence of these
equations. On the ascending branch, the relationship T ¼ FðjÞd
holds with j ¼ 0 and hence FðjÞ is a fixed constant. Therefore,
the relation between T and d is linear on the ascending branch.
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Fig. 1. Evolution of peak traction (left) and stiffness (right) with accumulation of damage.
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