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a b s t r a c t

We compare four candidate models (logistic, Gompertz, von Bertalanffy, and extreme value function)
for modelling the growth of birds. We fitted the models to two empirical data sets of chick growth
(six biometric measurements) of African black oystercatchers Haematopus moquini from South Africa
and little stints Calidris minuta from Russia, and identified the best-fitting growth curves by Akaike’s
information criterion. We also determine fitted and derived parameters, including the relative value
(size) at hatching, the placement of inflection, the (normalised) growth rate constant, and the adult value
(upper asymptote). The preferred model together with these factors describes how fast (or abruptly) the
curves asymptote, and illustrates why growth is poorly characterised by the growth rate constant alone.
Though the extreme value function model has not (as far as we know) been applied to chick growth data
before, it appears to return the best fit for some parameters in our data sets. For example, we found that
in African black oystercatchers two very different models best characterise two of the measurements:
the extreme value function model and the Bertalanffy model for tarsus growth and body mass growth,
respectively. In addition, we discuss the usefulness of fixing the upper asymptote to the adult value (e.g.,
adult body mass) and recommend a fixed upper asymptote in most cases.

© 2010 Elsevier GmbH. All rights reserved.

1. Introduction

Growth analysis is an important and one of the most studied
patterns in avian physiology (Zach et al., 1984; Zach, 1988; Starck
and Ricklefs, 1998; Pearce-Higgens and Yalden, 2002; Karkach,
2006; Tjørve et al., 2009). Whether body mass or another biomet-
ric measure is plotted against age, descriptions of growth typically
involve fitting sigmoid regression models to empirical data to
obtain parameter estimates (e.g., Ricklefs, 1976; Klaassen et al.,
1994; Hazlitt et al., 2002) or separate estimations of the value of
each parameter in the model (Ricklefs, 1967; Tjørve and Underhill,
2009).

The study of growth in birds began with studies of domestic
forms (e.g., Laird, 1965; Ricklefs, 1973). In 1965, Taylor con-
cluded that birds grow more rapidly than mammals but noted the
requirement for further growth data of wild birds. Ricklefs (1968)
compared the growth of almost 100 species of wild altricial bird
species. Since then, many studies on the growth of birds have
appeared. Analyses of growth in birds have been carried out using
different methods and models (Ricklefs, 1967; Schekkerman et al.,
2003; Narushin and Takma, 2003; Tjørve and Underhill, 2009). The
candidate regression models most commonly applied to the growth
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of body mass and other biometric measurements in young birds
(i.e., prefledging) are the logistic, the Gompertz, and the von Berta-
lanffy (hereafter referred to as the “Bertalanffy”) growth models, as
described by Ricklefs (1968, 1973) and Starck and Ricklefs (1998).
Remarkably enough, very little has changed since Ricklefs’ (1968,
1973) landmark papers in Ibis more than 35 years ago. Researchers
are still fitting the same models to their growth data, and with very
little discussion for justifying this practice. Yet any sigmoid model
with a positive value for the upper asymptote when x = 0 and an
inflection point may suffice (see, e.g., Tjørve, 2003, 2009 for a review
of sigmoidal candidate models).

Upon closer examination, the method of calculating and com-
paring growth rate constants is not well founded. The often scant
explanations of the methods make the replication of calculations
difficult and the comparison of studies impossible. In addition,
the choice of model is rarely linked to the reasons for fitting a
given curve (e.g., defined descriptive, explicative or predictive pur-
poses). Also, the choice rarely refers to statistical arguments, such
as goodness of fit and considerations of normal distribution(s) and
homoscedasticity (i.e., assumptions of the regression method) or
non-statistical arguments (e.g., expected curve shape and the pur-
pose of comparing data sets). Subsequent discussions of the fitted
growth curve typically found in the literature are usually limited to
one parameter of the model, k, which has been called the “growth
rate parameter”, “growth parameter”, “growth rate constant”, and
even “growth rate”. The last term is the most misleading, because
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this parameter is not the slope or rate at which the curve increases
with age in arithmetic space, but the rate at which the slope changes
with age. Further, the comparison of growth is made difficult due to
the use of different models that produce different growth parame-
ters. Ricklefs (1973) has determined approximate factors to convert
the growth rate constants between three regression models, the
logistic model, the Gompertz model, and the Bertalanffy model, in
order to compare studies that used different models.

Several studies have employed growth analyses to describe
the growth of species (e.g., Beintema and Visser, 1989; Viñuela
and Ferrer, 1997; Steinen and Brenninmeijer, 2002; Tjørve et al.,
2007, 2008), to compare growth patterns of different biomet-
rics within a species (e.g., Beintema and Visser, 1989; Tjørve and
Underhill, 2009), to compare one biometric between populations
(e.g., Redfern, 1983; Schekkerman et al., 1998), or to associate
environmental conditions to growth and energy expenditure (e.g.,
Klaassen, 1994; Schekkerman and Visser, 2001; Schekkerman et al.,
2003). Despite the large number of studies (see Starck and Ricklefs,
1998; Weathers, 1992; Tjørve et al., 2009 for reviews), there has
been no single standardised method to describe or assess the
growth of body mass or other biometric measurements across time.
Ricklefs’ (1967) method does not involve regression and is not dis-
cussed here.

Regression is usually performed as an ordinary least square
(OLS) regression (McArdle, 1988). A simple linear regression may
be applied after a linearisation (i.e., transformation) of the data
(Ricklefs, 1967; Ricklefs and White, 1981; Redfern, 1983; Miller
and Knopf, 1993) or a non-linear regression is used. The latter is
the more common today (e.g., Oniki and Ricklefs, 1981; Reed et al.,
1999; Viñuela and Ferrer, 1997; Arroyo et al., 2000), because com-
puters and statistical software have facilitated the computations.
These tools also allow for the use of models that are not easily lin-
earised. Of course, a linearised regression does not produce exactly
the same fitted parameter values as the non-linear regression since
the data points never fit perfectly to the curve. For this reason a
linearised regression may be preferable if the aim is to compare
parameter values from linearised regressions found in the litera-
ture.

One may fit a regression to the whole data set (all birds and all
observations) but this approach raises concerns of pseudoreplica-
tion, i.e., the lack of independence between data points (see Wilcox,
1996; Heffner et al., 1996). Some ways of avoiding pseudorepli-
cation include performing a regression of average values for each
day during the prefledging period (e.g., Reed et al., 1999), cal-
culating within-clutch averages (e.g., Greeney, 2008; Merino and
Potti, 1998), taking random samples from each individual (Pinaud
et al., 2005), performing a regression for individuals (e.g., Hunt and
Hunt, 1976; Tjørve et al., 2008), and applying Jackknife methods
(e.g., Schekkerman et al., 1998; Beintema and Visser, 1989). Robust
regression has become more available (in commercial software)
and may be a good alternative (see Tjørve and Underhill, 2009
for use of robust regression) because it relaxes the assumptions
of normality (Gaussian distribution) and homoscedasticity.

It is possible to fix parameter values or to estimate them
from expected values or means of observed values. The param-
eter fixed before the performance of the regression is typically
the upper asymptote. For the three (aforementioned) commonly
applied regression models, a single parameter controls the upper
asymptote.

This article reviews four candidate models, the logistic, Gom-
pertz, Bertalanffy, and the extreme value function (EVF) model
(Williams, 1995), and discusses their application and usefulness for
modelling growth in birds. It also considers the curve shapes of the
models in relation to expected and observed shapes of empirical
growth plots of six biometric measurements. A single regression
model does not necessarily fit all biometrics equally well. Tjørve

Table 1
Parametric interpretations for the candidate models showing the value (mass or
length) at the inflection point and the value relative to the upper asymptote (A).

Model Value at inflection (Mi) Value at inflection in % of A

Bertalanffy 8A/27 29.63%
Gompertz A/e 36.79%
Logistic A/2 50%
EVF A(1 − (1/e)) 63.21%

and Underhill (2009) noted, for instance, that the Gompertz model
fitted growth in mass well but the fit for tarsus was less satis-
factory. The aim of this study is thus not to demonstrate which
model is superior, but to illustrate how growth curves from differ-
ent species or from different biometrics may have different shapes
and therefore require different regression models. We intend to
show that characteristics other than, e.g., maximum growth rate
or comparisons of growth rate constants are useful in describing
growth patterns and differences between growth curves.

We will discuss the candidate models in relation to the position
of the inflection point (because different models have dissimilar
inflection points) and other parameters in relation to the expected
and observed curve shapes of different biometric measurements.
Furthermore, we discuss the usefulness of fixing the upper asymp-
tote to the adult value, e.g., adult body mass.

2. Methods

Growth usually follows a sigmoid curve shape. Candidate mod-
els should also have an upper asymptote corresponding to adult
size (of different biometric measurements). In addition, the hatch-
ing mass or hatching length (of different biometric measurements)
is defined by the intersection between the fitted curve and the x-
axis (i.e., at age 0). The point of the maximum growth rate is at the
inflection point, which for each model discussed is fixed at a given
percentage of the upper asymptote (Table 1).

2.1. The logistic model

The logistic growth curve is a three-parameter model, typically
given as:

M = A

1 + exp(−k(t − Ti))
, (1)

where M is body mass, A is the asymptotic body mass, k is the
growth rate constant, t is age, and Ti is the age at the inflection
point (Ricklefs, 1968; Tjørve and Underhill, 2009). This model is
quite inflexible, because it is symmetrical around the inflection
point, which is fixed at 50% of the upper asymptote. The value of
M at the inflection point is found at t = Ti. The model thus reduces
to A/(1 + exp(0)) = A/2. Despite this limitation, the logistic model is
one of the most useful and often applied models.

2.2. The Gompertz model

The Gompertz growth curve is usually (Ricklefs, 1968; Tjørve
and Underhill, 2009):

M = A exp(−exp(−k(t − Ti))). (2)

The Gompertz model is related to the logistic model, and behaves
quite similarly. It too is inflexible in that the inflection point is fixed,
but it is fixed at 36.79% of the upper asymptote. This is found at
t = Ti, which reduces the model to A exp(−1) = A/e. Therefore, the
Gompertz growth curve is best suited for growth processes where
the point of inflection is localised approximately at one-third of the
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