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ABSTRACT

An exact theory of interfacial debonding is developed for a layered composite system consisting of dis-
tinct linear elastic slabs separated by nonlinear, nonuniform decohesive interfaces. Loading of the top
and bottom external surfaces is defined pointwise while loading of the side surfaces is prescribed in
the form of resultants. The work is motivated by the desire to develop a general tool to analyze the
detailed features of debonding along uniform and nonuniform straight interfaces in slab systems subject
to general loading. The methodology allows for the investigation of both solitary defect as well as
multiple defect interaction problems. Interfacial integral equations, governing the normal and tangential
displacement jump components at an interface of a slab system are developed from the Fourier series
solution for the single slab subject to arbitrary loading on its surfaces. Interfaces are characterized by dis-
tinct interface force-displacement jump relations with crack-like defects modeled by an interface
strength which varies with interface coordinate. Infinitesimal strain equilibrium solutions, which account
for rigid body translation and rotation, are sought by eigenfunction expansion of the solution of the gov-
erning interfacial integral equations. Applications of the theory to the bilayer problem with a solitary

defect or a defect pair, in both peeling and mixed load configurations are presented.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

This paper presents an exact theory of debonding in a plane lay-
ered composite system consisting of distinct linear elastic slabs sep-
arated by nonlinear decohesive type interfaces of vanishing
thickness. The loading on the top and bottom exterior surfaces are
arbitrary and defined pointwise while the loading on each of the side
surfaces is defined by resultant shear and normal forces and bending
moments. The work is motivated by the relatively recent practice of
strengthening reinforced concrete slabs by adhering fiber reinforced
plastic plates to the surface. Predicting failure in these systems has
occupied the attention of the civil engineering community to a con-
siderable degree as evidenced by the numerous papers published on
this topic in recent years (e.g., Au and Buyukozturk, 2006; Leung and
Tung, 2006; Wang, 2007; Pan and Leung, 2007; Yuan et al., 2007; De
Lorenzis and Zavarise, 2008). These analyses are largely concerned
with the interface failure problem. Attempts to treat the coupled
flexural crack/interface debonding problem have received less
attention owing to the obvious complexities surrounding the
mechanical modeling of these interactions. Some experimental
and modeling work however has been carried out, e.g., Rabinovitch
and Frostig (2001), Teng et al. (2003) and Carpinteri et al. (2007).
Analyses of the interface failure problem are based on concepts from
either fracture mechanics of homogeneous solids and bimaterials or,
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cohesive zone modeling employing elementary beam theory and/or
finite element analysis (FEA). For the former, Hutchinson and Suo
(1992) provides a comprehensive review of this work through
1991.The origins of the later approach can be found in an interesting
paper by Ungsuwarungsri and Knauss (1987) who employed ele-
mentary beam theory and a number of different piecewise linear
cohesive force laws in normal mode to analyze fracture along an
interface in a double cantilever beam (DCB). In that work the inter-
face is divided into three distinct regions consisting of an unloaded
portion (the crack), a “yield” region characterized by a piecewise lin-
ear cohesive law and a semi-infinite linear elastic foundation region.
Stationary crack and quasi-static crack propagation behavior are
presented although the response in each of these circumstances is
obtained separately and the transition between the two is not cap-
tured. The paper also includes a comparison finite element analysis
and discussion on the use of the results for extracting the surface
energy and the shape of the cohesive law. Subsequent studies that
employed this approach for the bilayer problem consider different
geometries and loadings but typically utilize simplified cohesive
zone models to capture interface debonding. Rarely are general nor-
mal and shear interface force laws employed (an exception to thisisa
recent paper by Rabinovitch (2008)). Most recently an analysis along
the lines of Ungsuwarungsri and Knauss (1987) was carried out for
the problem of multiple defects situated on an interface in a DCB
configuration (Carpinteri et al., 2008). Like Ungsuwarungsri and
Knauss the authors assume the beam is materially uniform and
neglect shear allowing the use of an Euler-Bernoulli beam on an
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elastic foundation. Linear spring type interfaces are employed giving
rise to material interpenetration when the interface is in compres-
sion. The authors complement this work with FEA using a more gen-
eral interface force law to assess the significance of this deficiency.

A comprehensive finite strain, finite element analysis of debond-
ing of a viscoplastic block from a rigid substrate was carried out by
Needleman (1990a,b). This work utilized general nonuniform, non-
linear interface force laws to study quasi-static debonding along a
straight interface under uniaxial straining (Needleman, 1990a) and
plane strain tension with superimposed hydrostatic stress (Needle-
man, 1990b). Here, interface nonuniformity was taken in the form of
an interface coordinate dependent interface strength, i.e., a non-
bonded portion of interface. The use of nonlinear interface force-sep-
aration relations to model separation/slip behavior introduces a
characteristic force length in the analysis. For decreasing values of
this parameter a transition is shown to occur between more or less
uniform separation along the bond line to crack-like propagation
of the defect. The studies also indicate that interfacial shear leads
to shear dominated decohesion when the interface is uniform and
there is significant differential lateral contraction between the rigid
substrate and the viscoplastic block.

The present paper provides an exact elasticity solution to a
composite slab system composed of N distinct layers subject to
general loading. As such it is not subject to the usual approxima-
tions inherent in beam theory. Furthermore, because the goal is
to focus on the detailed features of quasi-static defect propagation
our analysis process provides a sharper tool to investigate brittle
and ductile interfacial decohesion in solitary and multiple defect
interaction problems then the finite element method. In the fol-
lowing section an exact Fourier series solution for a single slab is
presented. This sub-problem is similar in some respects to the
well-known plane beam problems considered by Timoshenko
and Goodier (1970) and, more recently, Soutas-Little (1973) and
Barber (2002), but differs in that general, weak boundary condi-
tions are prescribed on the side surfaces. In Section 3, this solution
is used to construct integral equations governing interfacial sepa-
ration for the two-slab (bilayer) and the multi-slab systems fully
accounting for rigid body translation and rotation. Section 4 pre-
sents solutions for the bilayer, solitary defect! problem under peel-
ing load and mixed load while Section 5 treats the defect pair?
problem for the bilayer. The explicit interface force law used in these
applications is primarily of exponential type developed by Xu and
Needleman (1993) although any form may be employed (for com-
parison purposes, in some calculations we utilize the piecewise lin-
ear uncoupled normal and shear laws (De Lorenzis and Zavarise,
2008)). In fact, different forms could be employed for different inter-
faces in systems in which the number of slabs exceeds two. Interface
non-uniformity, i.e., defect specification, at any particular interface is
captured by a spatially varying interface strength in the form of non-
bonded portions of interface. The paper closes with a brief section on
conclusions.

2. Solutions for the single slab

Consider a planar linear elastic slab B = {(x,y)|x € (-1,
y € (=h, h)} subject to strong (that is pointwise prescribed) bound-
ary conditions on the horizontal surfaces,

Sy(X.y=h)=f(x), Syxy="h) =£fx
SXY(xvy = _h) :f;cz(x)7 SJ/Y(xvy = _h) :f;/z(x)

and weak (that is resultant prescribed) boundary conditions on the
vertical surfaces,

(1)

! A single nonbonded portion of interface.
2 Two distinct, separated nonbonded portions of interface.

h h
/ Sw(x = Ly)dy = Q,. / Sw(x = ~Ly)dy = Q,

/ SXXX—lydy N27 / Sxx

/hysxx(xz17Y)dy:M27 /hysxx(x_

=-Ly)dy =N (2)

~Ly)dy = M,

where (Sx,Sy,S,y) represent the planar components of the stress
tensor S in Cartesian coordinates and (Ni,Qq,M;,N>,Q;,,M,) are
the prescribed axial force, shear force and bending moment per unit
depth of the cross-section, respectively (Fig. 1). The loadings
() . f2.f}.f2), representing normal and shear tractions on the hori-
zontal surfaces, are assumed to be square integreble® and consistent
with global equilibrium of the slab, but otherwise arbitrary. Note
that the superscript on the traction components (f}, f;) indicates
top (i=1) or bottom (i = 2) surface (for resultants (N;,Q;, M;) the
subscript indicates left (i = 1) or right (i = 2) surface). Depending
upon whether the slab surface is interior or exterior the functions
(fe.f).f2.f2) are regarded as applied boundary tractions or, reactive
displacement jump dependent interface tractions. The equations of
global equilibrium representing force and moment balance are given
by,

N, — N]-"-/U;‘ x }dX*
Q-Q+ / () - f2(x)]dx = 0

3)
(Qy + Qi) + (M — My) + /x[ﬂ ~ P2(x))dx

1
_ 1 2 _
h [ 160+ Foldx =0

where use has been made of the weak boundary conditions (2).
Stress function solutions that satisfy the biharmonic equation

(AAp = 0) may be expressed in the form of an eigenfunction

expansion,

nm

O = —— (4)

Sin o,X, I

¢ = Z Wa(Y) COS 0tX + Z Na(¥)
n=0

n=1
with y,,, 1, given by,

‘/’0(}’) Cio + Caoy + C30y? + Cagy?

Yo (y) = Cypcosh oy + Cop sinh atyy + Cspy cosh oy + Cany sinh oy
1,(¥) = D1n cosh any + Doy sinh o,y + D3y cosh oy + Dayy sinh o,y
n=1,23,...

)

The terms Cyo,Cyoy are degenerate since they lead to a null stress
field, i.e., components
2 2 2
Sa=S8 Sy=3L Sy=—pt 6)
)y OX oxoy
vanish identically. The stress function Coxy + C;x*> however leads to
Fourier stress components, Sy =0, S,, = 2Cy, Sy, = —Co. In addi-
tion, we must add the stress function C,x2y + C3xy? + C4xy* which
captures axial variation of shear force, normal force and bending
moment required by the weak boundary conditions on the surfaces
at x = &I (Fig. 1). Thus the complete stress function is given by (4)
and (5) with Cip+ Caoy 4 C30y? + Ca0y® in yy(y) replaced by
Coxy + C1X2 4 C30y? + Ca0y? + Cox2y + C3xy? + Cyxy®.  The  seven
constants {Co, Cy,C;,C3,Cq,C30,Ca0} together with the 8 sets
of coefficients {Cin,Can,Csn,Can, D1n,Dan, D3n,Dan,n =1,2,...} are

3 A function which is piecewise continuous with a finite number of bounded jump
discontinuities.
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