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a b s t r a c t

In this paper a new Kirchhoff plate model is developed for the static analysis of isotropic micro-plates
with arbitrary shape based on a modified couple stress theory containing only one material length scale
parameter which can capture the size effect. The proposed model is capable of handling plates with com-
plex geometries and boundary conditions. From a detailed variational procedure the governing equilib-
rium equation of the micro-plate and the most general boundary conditions are derived, in terms of
the deflection, using the principle of minimum potential energy. The resulting boundary value problem
is of the fourth order (instead of existing gradient theories which is of the sixth order) and it is solved
using the Method of Fundamental Solutions (MFS) which is a boundary-type meshless method. Several
plates of various shapes, aspect and Poisson’s ratios are analyzed to illustrate the applicability of the
developed micro-plate model and to reveal the differences between the current model and the classical
plate model. Moreover, useful conclusions are drawn from the micron-scale response of this new Kirch-
hoff plate model.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The behavior of micron-scale structures has been proven exper-
imentally to be size dependent. Therefore, the classical continuum
theory is inadequate to predict their response and the utilization of
strain gradient (higher order) theories containing internal material
length scale parameters is inevitable. For a literature review of the
afore-mentioned theories can be found in the recent works of
Vardoulakis and Sulem (1995); Exadaktylos and Vardoulakis
(2001) and Tsepoura et al. (2002). Although, the strain gradient
theories encounter the physical problem in its generality, they con-
tain additional constants – besides the Lamé constants - which are
difficult to determine even in their simplified form containing only
two additional constants (Lam et al., 2003). Thus, gradient elastic-
ity theories of only one additional material constant have been
developed.

Altan and Aifantis (1992) suggested a simplified strain gradient
model with only one strain gradient coefficient of length squared
dimension which has been used by many investigators (e.g., Askes
and Aifantis, 2002; Lazopoulos, 2004; Papargyri-Beskou and Bes-
kos, 2008). A variational formulation of this simplified gradient
elasticity theory has been presented by Gao and Park (2007) deter-
mining simultaneously both the equilibrium equations and the
complete boundary conditions for the first time.

Yang et al. (2002) – modifying the classical couple stress theory
(e.g. Mindlin, 1964; Koiter, 1964) – proposed a modified couple
stress model in which only one material length parameter is

needed to capture the size effect. This simplified couple stress the-
ory is based on an additional equilibrium relation which force the
couple stress tensor to be symmetric. So far has been developed for
the static bending (Park and Gao, 2006) and free vibration (Kong
et al., 2008) problems of a Bernoulli-Euler beam and for the static
bending and free vibration problems of a Timoshenko beam (Ma
et al., 2008). Moreover, Park and Gao (2008) solved analytically a
simple shear problem after the derivation of the boundary condi-
tions and the displacement form of the theory.

The work that has been done on the analysis of micro-plates is
limited only to publications of linear and nonlinear plate models
based on the simplified strain gradient model with one internal
parameter introduced by Altan and Aifantis (1992). More specifi-
cally, Lazopoulos (2004) developed a strain gradient geometrically
nonlinear plate model modifying Von Karman’s nonlinear equa-
tions. This model was implemented in the study of the localized
buckling of a long plate under uniaxial in-plane compression and
small lateral loading, using the multiple scales perturbation meth-
od. Papargyri-Beskou and Beskos (2008) derived explicitly the gov-
erning equation of motion of gradient elastic flexural Kirchhoff
plates, including the effect of in-plane constant forces on bending.
In their work three boundary value problems were investigated
(using the double Fourier series solution) dealing with static, sta-
bility and dynamic analysis of a rectangular simply supported gra-
dient elastic flexural plate. However, the main drawback of the
above plate models is that the presence of the microstructural ef-
fect raises the order of the resulting partial differential equation
form four (classical case) to six (gradient case). As well as the
classical boundary conditions are supplemented by additional
(non-classical) ones containing higher order traction and higher
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order moments. Hence, the employed analytical solutions are re-
stricted only to simple geometric shapes.

In this paper a new Kirchhoff plate model is developed for the
static analysis of isotropic micro-plates with arbitrary shape based
on the simplified couple stress theory of Yang et al. (2002) contain-
ing only one material length scale parameter which can capture
the size effect. The proposed model is capable of handling plates
with complex geometries and boundary conditions. To the author
knowledge publications on the solution of the particular problem
have not been reported in literature. The rest of paper is organized
as follows. In Section 2 the total potential energy and its first var-
iation of a three-dimensional body in rectangular coordinates are
presented according to the modified couple stress theory. Using
the minimum potential energy principle the governing equilibrium
equation together with the pertinent boundary conditions in terms
of the deflection are derived in their most general form, including
elastic support or restraint, in Section 3. The resulting boundary
value problem of the micro-plate is of the fourth order and it is
solved using the Method of Fundamental Solutions (MFS) in Sec-
tion 4. Several plates of various shapes, aspect and Poisson’s ratios
are analyzed in Section 5 to illustrate the developed micro-plate
model and to reveal the differences between the current model
and the classical plate model. Finally, a summary of conclusions
is given in Section 6.

2. Modified coupled stress theory

In the modified couple stress theory of Yang et al. (2002), the
strain energy density in rectangular coordinates of a three-dimen-
sional body occupying a volume V bounded by the surface X is gi-
ven as

U ¼ 1
2

Z
V
ðrijeij þmijvijÞdV ð1Þ

where

eij ¼
1
2
ðui;j þ uj;iÞ ð2Þ

vij ¼
1
2
ðhi;j þ hj;iÞ ð3Þ

are the strain tensor and the symmetric part of the curvature tensor,
respectively, ui is the displacement vector and hi is the rotation vec-
tor defined as (Yang et al., 2002)

hi ¼
1
2

eijkuk;j ð4Þ

where eijk is the permutation symbol. In what it follows, unless
otherwise stated, the Greek indices take the values 1, 2, while the
Latin indices take the values 1, 2, 3. Moreover, rij is the stress tensor
and mij is the deviatoric part of the couple stress tensor given as

rij ¼ kekkdij þ 2leij ð5Þ
mij ¼ 2ll2vij ð6Þ

where, k and l are the Lamé constants, dij is the Kronecker delta and
l is a material length scale parameter. From Eq. (3) it can be noted
that the curvature tensor vij is symmetric and consequently from
Eq. (6) the couple stress tensor mij is also symmetric. That is, only
the symmetric part of displacement gradient and the symmetric
part of rotation gradient contribute to the deformation energy
(Yang et al., 2002) which is different from that in the classical cou-
ple stress theory (e.g. Mindlin, 1964; Koiter, 1964).

Following Yang et al. (2002) and Park and Gao (2008), the work
produced by the external forces is

W ¼
Z

V
ðbiui þ cihiÞdV þ

Z
X
ðtiui þ sihiÞdX ð7Þ

where bi; ci; ti, and si are the body force, body couple, traction and
surface couple, respectively. Hence, the total potential energy of
the deformable body using Eqs. (1) and (7) is written as

P ¼ U �W ¼ 1
2

Z
V
ðrijeij þmijvijÞdV �

Z
V
ðbiui þ cihiÞdV

�
Z

X
ðtiui þ sihiÞdX ð8Þ

and its first variation gives

dP¼
Z

V
ðrijdeijþmijdvijÞdV�

Z
V
ðbiduiþ cidhiÞdV�

Z
X
ðtiduiþ sidhiÞdX

ð9Þ

3. Governing equation and pertinent boundary conditions of
micro-plates

Consider an initially flat thin elastic plate of thickness h consist-
ing of homogeneous linearly elastic material occupying the two-
dimensional domain X of arbitrary shape in the x; y plane bounded
by the curve C which may be piecewise smooth, i.e. it may have a
finite number of corners (see Fig. 1). The plate is bending under the
combined action of the distributed transverse load qðx; yÞ, the edge
moment eMnn and the edge force eV n producing a three dimensional
deformation state including the transverse deflection wðx; yÞ and
the in plane displacements uaðx; y; zÞ which in the absence of in
plane forces are written as (Timoshenko and Woinowsky-Krieger,
1959)

uaðx; y; zÞ ¼ �zw;a ð10Þ

Taking into account Eqs. (10), (4) and that

w;1 � w;x; w;2 � w;y ð11Þ

the displacement and rotation vectors of the micro-plate become,
respectively,

u ¼ �zw;x e1 � zw;y e2 þwe3 ð12Þ
h ¼ w;y e1 �w;x e2 ð13Þ

Substituting Eqs. (12) and (13) into Eqs. (2) and (3) the nonzero
components of the strain and curvature tensor are written as

ex � e11 ¼ �zw;xx; ey � e22 ¼ �zw;yy; cxy � 2e12 ¼ �2zw;xy

ð14a;b; cÞ

vx � v11 ¼ w;xy; vy � v22 ¼ �w;xy; vxy � v12 ¼
1
2
ðw;yy �w;xxÞ

ð15a;b; cÞ

respectively.
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Fig. 1. Plate geometry and distribution of the boundary and source nodes.
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