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a b s t r a c t

Obtaining the Green tensor for the most general orthotropic medium is not generally possible in a closed
form because the solution requires the roots of a sextic, often known as Stroh eigenvalues. The paper
gives some conditions under which the sextic can be solved in a closed form for any direction within
the space. It enables the construction of classes of orthotropic materials for which the Green tensor
can be computed in a closed form (closed-form orthotropic or CFO) for any direction within the space.
The cases of transversely isotropic, tetragonal and cubic materials are studied as special cases. The com-
parison between the exact Green function and approximate Green functions obtained from the nearest
CFO material (in the sense of four different distances) is finally performed in the case of five examples
of elasticity tensors.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The Green tensor for elasticity in an infinite space is defined by
the displacement field at any point within a linear elastic medium
induced by a point force in any direction. It is the basis of many
applications either to obtain the stress field due to defects (Mura,
1987) or to solve elasticity problems by integral equations meth-
ods. When the material is not isotropic, a fully explicit analytical
solution for the Green function can be obtained for 2D problems.
In the case of 3D problems a fully explicit expression of the Green
tensor has been obtained only in some specific situations:

� for any direction within a transversely isotropic material (Kro-
ner, 1953; Lejcek, 1969; Willis, 1969; Dahan and Predeleanu,
1980; Pan and Chou, 1976; Nakamura and Tanuma, 1997);

� for materials whose elastic tensors are obtained by linear trans-
formation of the axes from transversely isotropic materials
(Pouya and Zaoui, 2006; Pouya, 2007a,b) for materials character-
ized by the ellipsoidal anisotropy of De Saint Venant (1863);

� for orthotropic or anisotropic materials when the direction
between the point where the displacement is computed and
the point where the force is applied is parallel or perpendicular
to some planes of symmetry (Ting and Lee, 1997; Lee, 2002).

Series solutions can also be obtained in other cases (Mura and
Kinoshita, 1971; Mura, 1987; Chang and Chang, 1995; Kuznetsov,
1996; Faux and Pearson, 2000), but such solutions lead to compu-
tation times which could limit the possibility of applications.

Approximate solutions can also be obtained for example in the case
of cubic crystals (Dederichs and Leibfried, 1969).

For the general case of anisotropy, the solution can be put into
the form of a scalar integral of a rational fraction (Lifshitz and Ro-
zenzweig, 1947; Mura, 1987). Such a form of solution can be used
for numerical purposes within the boundary element method by
computing numerically the integral (Condat and Kirchner, 1987;
Wang, 1997; Sales and Gray, 1998; Tonon et al., 2001; Lee,
2003). It needs, however, further developments and it induces a
priori longer computation times than a closed form solution.

The main problem for obtaining a closed form of the Green ten-
sor is that the denominator of the rational fraction which appears
in the integral form of that tensor is a sixth order polynomial,
whose roots cannot be obtained in a closed-form (Head, 1979) in
the most general case. The purpose of the paper is to search elas-
ticity tensors which display such a property and to show that in
the case of some specific orthotropic material, the roots of the sixth
order polynomial can be obtained for any direction of the space.
The Green tensor can then be computed in a closed form for any
direction of the space.

2. The Green tensor for an anisotropic material

The component Gkmðx� yÞ of the Green tensor of an elastic
medium is defined as the displacement component in the xk-direc-
tion at point x when a unit body force in the xm-direction is applied
at point y in an infinitely extended media. These components com-
ply to the equilibrium equations:

Cijks
o2Gkm

oxjoxs
þ dimdðx� yÞ ¼ 0 ð1Þ
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where dðx� yÞ is the Dirac delta function, dim is the Kronecker delta
and Cijks are the elastic constants.

A classical derivation (Lifshitz and Rozenzweig, 1947; Mura,
1987) leads to the expression of the Green tensor G under the form
of a contour integral:

G ¼ 1
8p2r

Z
C

Q�1ðkÞdsðkÞ ð2Þ

where r is the distance between point force and observation point.
The integrand is the inverse of the second order acoustic tensor

Q, whose components are the following:

Q ikðkÞ ¼ Cijkskjks ð3Þ

The contour integral must be computed along the circle C of unit
radius centered at the origin which is in the plane (P) perpendicular
to the direction x� y.

If y is chosen at the origin, the cartesian coordinates of the unit
vector in the direction x are given as functions of its spherical coor-
dinates as follows:

ðsinð/Þ � cosðhÞ; sinð/Þ � sinðhÞ; cosð/ÞÞ

Let n and m be two orthogonal unit vectors parallel to the plane
(P); these two vectors can be chosen as follows:

� for n : ðsinðhÞ;� cosðhÞ;0Þ;
� for m : ðcosð/Þ � cosðhÞ; cosð/Þ � sinðhÞ;� sinð/ÞÞ.

In the plane (P), the vector k can be expressed as:

k ¼ cos wnþ sin wm ¼ cos wðnþ pmÞ ð4Þ

where p ¼ tanðwÞ
With these notations, Eq. (2) can be written as:

G ¼ 1
8p2r

Z 2p

0
Q�1ðwÞdw ð5Þ

Let:

Q 0ik ¼ Cijksnjns Rik ¼ Cijksnjms Tik ¼ Cijksmjms ð6Þ

The matrix Q ðwÞ is a function of w which can be written:

Q ðwÞ ¼ Q 0 cos2 wþ ðR þ RTÞ cos w sin wþ T sin2 w ð7Þ
¼ CðpÞ cos2 w ð8Þ

where

CðpÞ ¼ Q 0 þ pðR þ RTÞ þ p2T ð9Þ

Finally, with the use of p ¼ tanðwÞ:

G ¼ 1
4p2r

Z 1

�1
C�1ðpÞdp ¼ 1

4p2r

Z 1

�1

bCðpÞ
jCjðpÞ dp ð10Þ

where bC and jCj are the adjoint and the determinant of C. The com-
ponents of bC are polynomials of fourth order and jCj is a sixth order
polynomial.

Computing the integral in (10) by residue calculus requires the
poles located at the roots of the sixth order polynomial jCj which
are all complex (Ting, 1996). If these poles are known and if these
poles are distinct, the Green tensor is given by:

G ¼ 1
2pr

i
X3

m¼1

bCðpmÞ
jCj0ðpmÞ

ð11Þ

where pm are the roots of jCj with a positive imaginary part and
jCj0ðpÞ is the derivative of jCjðpÞ.

Obtaining the roots of jCjðpÞ is not generally possible by using
radicals as it is well known from the work of Galois (Head,
1979). In the general case, it is possible (Ting, 1996) to obtain these
values by computing numerically the eigenvalues of the matrix

�T�1RT T�1

RT�1RT � Q 0 �RðTTÞ�1

" #
ð12Þ

In some special cases, the equation jCjðpÞ ¼ 0 can be solved in a
closed form; for example if the symmetry is such that the odd pow-
ers of p are cancelled in CðpÞ. In such a case, the equation is a third
order equation in p2. The equation jCjðpÞ ¼ 0 has, however, no
closed form solution in the most general case. The aim of the fol-
lowing is to describe situations, in the case of orthotropic materials
only, where the roots of jCjðpÞ can be obtained in a closed form for
any direction of the vector x� y.

3. Principles for the factorization of the determinant of the
acoustic tensor

The previous section has shown that computing the integral in
(10) by residue calculus requires the computation of the poles lo-
cated at the roots of the sixth order polynomial jCjðpÞ. The proper-
ties of jCjðpÞ are, however, closely related to the properties of the
determinant DðkÞ ¼ jQ ðkÞj of the acoustic tensor Q ðkÞ.

In the following, the material will be assumed orthotropic and
all Cijkl are, in the axes of symmetry of the material, functions of
nine constants which can be denoted c11, c22, c33, c23, c31, c12, c44,
c55, c66 where the classical notation with two indices cij is used:

cij ¼ Ciijj for i ¼ 1; . . . ;3; j ¼ 1; . . . ;3

cII ¼ Cijij for I ¼ 4; i ¼ 2; j ¼ 3 or I ¼ 5; i ¼ 3; j ¼ 1 or
I ¼ 6; i ¼ 1; j ¼ 2

cIJ ¼ 0 for I P 4; J 6 3 or J P 4; I 6 3 or
ðI; J P 4 and I–JÞ

This change of notation assumes that the new matrix coefficients al-
low the computing of the components of the stress tensor from the
components of cij ¼ 2�ij. This leads to the matrix related to the
acoustic tensor given in Appendix D.

If the coordinate axes are chosen along the axes of symmetry of
the material, the determinant DðkÞ of the matrix related to the
acoustic tensor is an homogeneous function of third order of the
squares of the coordinates k1, k2, k3 of k given by:

D ¼ a111l3
1 þ a222l3

2 þ a333l3
3 þ a112l2

1l2 þ a113l2
1l3 þ a221l22l1

þ a223l2
2l3 þ a331l2

3l1 þ a332l2
3l2 þ a1l1l2l3 ð13Þ

where li ¼ k2
i and where the coefficients aijk are functions of the

elastic coefficients cIJ given in Appendix A.
As explained previously, the case of a transversely isotropic

material (or the one of a material obtained from a transversely iso-
tropic material by a scaling of the axes) is such that the Stroh
eigenvalues can be obtained in a closed form for the 3D case,
allowing the Green tensor to be obtained in a closed form.

It is easy to show that such a result is due to the fact that the
determinant D of the acoustic tensor can be factorized by using
homogeneous order 2 polynomials in ki (or linear homogeneous
polynomials in li).

Indeed, for a transversely isotropic material, the components of
the elasticity tensor can be written as functions of five elastic con-
stants c11; c33; c12; c13; c44, other constants being given by:

c22 ¼ c11

c23 ¼ c13

c55 ¼ c44

c66 ¼
1
2
ðc11 � c12Þ

ð14Þ
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