
Article

Cell Metabolism

NANOG Metabolically Reprograms Tumor-Initiating **Stem-like Cells through Tumorigenic Changes in Oxidative Phosphorylation and Fatty Acid Metabolism**

Graphical Abstract

Highlights

- Stem cell marker NANOG is activated by the TLR4-E2F1 pathway
- NANOG ChIP-seg identifies target genes involved in **OXPHOS and FAO**
- Nanog represses OXPHOS and mitochondrial ROS in TICs
- Restoration of OXPHOS and inhibition of FAO restores TIC susceptibility to drugs

Authors

Chia-Lin Chen, Dinesh Babu Uthaya Kumar, Vasu Punj, ..., Stanley M. Tahara, Sonja Hess, Keigo Machida

Correspondence

keigo.machida@med.usc.edu

In Brief

Chen et al. show that the pluripotency transcription factor NANOG contributes to liver cancer progression by reprogramming mitochondrial metabolism to promote self-renewal ability, tumor-initiation property, and chemoresistance of tumor-initiating stem-like cells (TICs). Restoration of OXPHOS activity and inhibition of fatty acid oxidation restores TIC susceptibility to chemotherapy drugs.

Accession Numbers GSE61435 GSE68237

Chen et al., 2016, Cell Metabolism 23, 206-219 CrossMark January 12, 2016 ©2016 Elsevier Inc. http://dx.doi.org/10.1016/j.cmet.2015.12.004

NANOG Metabolically Reprograms Tumor-Initiating Stem-like Cells through Tumorigenic Changes in Oxidative Phosphorylation and Fatty Acid Metabolism

Chia-Lin Chen,¹ Dinesh Babu Uthaya Kumar,¹ Vasu Punj,^{2,5} Jun Xu,³ Linda Sher,⁴ Stanley M. Tahara,¹ Sonja Hess,⁶ and Keigo Machida^{1,7,*}

¹Department of Molecular Microbiology and Immunology

²Department of Medicine

³Department of Pathology

⁴Department of Surgery

University of Southern California, Keck School of Medicine, Los Angeles, Los Angeles, CA 90033, USA

⁵Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA

⁶Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91106, USA

⁷Southern California Research Center for ALPD and Cirrhosis, Los Angeles, CA 90033, USA

*Correspondence: keigo.machida@med.usc.edu

http://dx.doi.org/10.1016/j.cmet.2015.12.004

SUMMARY

Stem cell markers, including NANOG, have been implicated in various cancers: however, the functional contribution of NANOG to cancer pathogenesis has remained unclear. Here, we show that NANOG is induced by Toll-like receptor 4 (TLR4) signaling via phosphorylation of E2F1 and that downregulation of Nanog slows down hepatocellular carcinoma (HCC) progression induced by alcohol western diet and hepatitis C virus protein in mice. NANOG ChIP-seq analyses reveal that NANOG regulates the expression of genes involved in mitochondrial metabolic pathways required to maintain tumor-initiating stem-like cells (TICs). NANOG represses mitochondrial oxidative phosphorylation (OXPHOS) genes, as well as ROS generation, and activates fatty acid oxidation (FAO) to support TIC self-renewal and drug resistance. Restoration of OXPHOS activity and inhibition of FAO renders TICs susceptible to a standard care chemotherapy drug for HCC, sorafenib. This study provides insights into the mechanisms of NANOG-mediated generation of TICs, tumorigenesis, and chemoresistance through reprogramming of mitochondrial metabolism.

INTRODUCTION

Major risk factors for the third-deadliest cancer, hepatocellular carcinoma (HCC), are hepatitis C virus (HCV), alcoholism, and obesity (He et al., 2008; Okuda et al., 2002). Compelling evidence identifies a synergism between obesity/alcohol and HCV infection with the associated risk of developing HCC (Yuan et al., 2004). The risk of HCC increases from 8–12 to 48–54 by co-morbidities such as alcoholism or obesity (Yuan et al., 2004). Obesity

and alcoholism increase gut permeability leading to endotoxemia, which in turn activates Toll-like receptor 4 (TLR4) in the liver with production of cytokines and an inflammatory response. This leads to subsequent development of obesity/alcohol-related liver disease (Hritz et al., 2008). Therefore, an in-depth understanding of the underlying molecular mechanisms regulating obesity/alcohol/HCV-induced hepatocarcinogenesis is essential for the development of improved therapeutics.

By using mice with liver-specific expression of the HCV NS5A protein, we demonstrated that mice fed alcohol for 12 months develop liver tumors in a TLR4-dependent manner (Chen et al., 2013). TLR4 is ectopically induced by the HCV viral protein NS5A in hepatocytes/hepatoblasts. Circulating endotoxin binds TLR4, activates hepatocytes/hepatoblasts, and induces the stem cell marker NANOG. This process generates TLR4/ NANOG-dependent, chemoresistant tumor-initiating stem-like cells (TICs; CD133+), which can induce HCC in mice (Chen et al., 2013).

TICs are rare, highly malignant cells that are present in diverse tumor types and play a central role in tumorigenesis, malignant progression, and resistance to chemotherapy (Machida et al., 2009; Rountree et al., 2008). Sorafenib, a multi-kinase inhibitor, is the most commonly used monotherapy agent for the treatment of HCC; however, resistance to sorafenib eventually occurs in patients (Villanueva et al., 2008). We recently reported that treatment with sorafenib made TICs more susceptible to tumor growth retardation, with a decrease in tumor size by \sim 55% when combined with knockdown of NANOG-inducible protooncogenes (including YAP1, which induces antioxidant gene programs) (Chen et al., 2013). However, the underlying mechanism of chemoresistance and self-renewal of TICs remains incompletely understood.

We hypothesized that NANOG promotes self-renewal ability, tumor-initiation property, and chemoresistance of TICs through metabolic reprogramming. Our studies showed that oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO) were NANOG-mediated oncogenic pathways through metabolic reprogramming as demonstrated by NANOG ChIP-seq analysis and metabolomic profiling.

Download English Version:

https://daneshyari.com/en/article/2792587

Download Persian Version:

https://daneshyari.com/article/2792587

Daneshyari.com