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a b s t r a c t

Based on the Porous Media Theory (PMT), a mathematical model of space-axisymmetrical problems for
incompressible fluid-saturated visco-elastic porous media is presented in the case of small deformation,
in which the differential-type constitutive relation is applied to describe the mechanical characteristics of
solid skeleton. The differential quadrature method (DQM) and the second-order backward difference
scheme are used to discretize the governing equations on the spatial and temporal domains, respectively,
and a method is proposed to deal with the singularity conditions at points located on the symmetry axis.
As application, the dynamic behavior of a column of fluid-saturated elastic porous media is analyzed
firstly. The obtained results are compared with the analytical results in the existing literature, they are
comparatively accordant, which means that the model and method presented in this paper are correct,
and the obtained results are reliable. Further, the dynamic response of a space-axisymmetrical body of
fluid-saturated visco-elastic porous media is analyzed, in which the material characteristic of the solid
skeleton is described by Burgers model with four parameters.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

With the development of science and technology, the investiga-
tion of porous media plays an important role in its classical appli-
cation fields, such as soil mechanics, hydrology, etc., furthermore,
it becomes the key to development of emerging sciences and tech-
nologies as well, such as, fluid–solid coupling problems in exploi-
tation of the oil and natural gas, mechanical characteristics of the
skin, soft tissue and articular cartilage in biology, migration issues
of pollutants in the soil media, fluid–solid coupling problems in the
rational development and utilization of the geothermal reservoir,
etc. Hence, the relevant theoretical analyses and numerical simula-
tion methods are important.

The main theories for porous media include Biot Theory (Biot,
1941, 1956), Porous Media Theory (Bowen, 1982; de Boer, 2000)
and Hybrid Mixture Theory (Schrefler et al., 1995; Schrefler,
2002). Based on the Terzaghi’s work, Biot first proposed a theory
of fluid-saturated porous media. The theory has been successfully
applied to many fields of engineering science although it is not
based on sound mechanical principles, it introduced quite a good
model in an intuitive way (Edelman et al., 2002; de Boer, 2005).
At later stage, Boer established a complete porous elastic theory
based on the continuous media mixture laws and the concept of
volume fraction, in which several micro-mechanical characteris-

tics can be directly applied to describe the macro-mechanical char-
acteristics (de Boer, 2005). At the same time, Boer’s model can
reflect some effects, such as, dynamical response, material and
geometric nonlinearities, etc. easily. Thus, the theory of Boer
may be an alternative method to study the mechanical properties
of porous media.

Based on the Porous Media Theory (PMT), some analytical and
numerical methods have been developed. de Boer et al. (1993)
gave the analytical solution for the one-dimensional transient
wave propagation in fluid-saturated incompressible elastic porous
media by Laplace transform. Breuer (1996, 1999) applied a stan-
dard Galerkin finite element method to numerically predict the
reflection and refraction of one-dimensional nonlinear longitudinal
wave as well as the propagation of two-dimensional linear wave
and Rayleigh wave in incompressible fluid-saturated porous med-
ia. Under the case of geometrical and material nonlinearity, Diebels
and Ehlers (1996) analyzed the dynamic consolidation and seepage
problems in fluid-saturated porous media with visco-elastic and
elastic-plastic solid skeleton. Based on the assumptions of small
deformation and linear elastic material, Aboustit et al. (1985)
established variational principles of incompressible static thermal
consolidation of fluid-saturated porous media. Based on the similar
assumptions, Yang and Cheng (2003) developed a Gurtin-type var-
iational principle of incompressible fluid-saturated porous media
and yielded the corresponding finite element formulas. Yang and
He (2003) further extended the variational principles in reference
Yang and Cheng (2003), and obtained some relevant generalized
variational principles.
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Most of the problems of the two-phase behavior of a fluid-sat-
urated porous media can often be predicted quantitatively by
numerical computation. Only a few analytical solutions are avail-
able, which are used to verify the numerical results based on the
same theory (Breuer and Jagering, 1999). In this work, based on
the Theory of Porous Media (PMT) and the differential quadrature
method (DQM), a space-axisymmetrical problem of incompressible
isotropic fluid-saturated visco-elastic porous media is analyzed, in
which one assumes that the porous media is composed of com-
pressible solid and incompressible fluid. Firstly, governing
equations for analyzing space-axisymmetrical problems of incom-
pressible fluid porous visco-elastic media are presented in the case
of small deformation, in which the differential-type constitutive
relation is applied to describe the characteristic of solid skeleton.
Secondly, the DQM is applied to discretize the governing equations
on the spatial domain, and yield a set of algebraic-differential
equations with respect to time. The second-order backward differ-
ence scheme is used to discretize the set of algebraic-differential
equations. Two numerical examples are proposed, one of which
is to validate the method presented in this paper. In the example,
the dynamic response of a column of fluid-saturated elastic porous
media is analyzed under the cycle and step loading, and the ob-
tained numerical result is compared with the analytical result
(de Boer et al., 1993). One can see that they are comparatively
accordant. In another example, the dynamic response of a space-
axisymmetrical body in fluid-saturated visco-elastic porous media
is studied, in which one assumes that the volume deformation is
elastic and the bulk modulus is independent of time, and that
the shear deformation obeys Burgers model of visco-elastic mate-
rial with four parameters.

2. Mathematical model

2.1. Basic field equations of visco-elastic fluid-saturated porous media

Assume that V is the initial spatial domain occupied by incom-
pressible fluid-saturated visco-elastic porous media and S is its
surface. Based on the Theory of Porous Media developed by de Boer
(2005), a kind of fluid-saturated porous media can be thought as an
idealization mixture, and it is uniformly composed of solid and
fluid phases /a(a = S: solid skeleton; a = F: fluid phase), and each
of them owns its individual motion. Thus, we have

xa ¼ xaðX; tÞ; ðX; tÞ 2 V � ½0;þ1� ð1Þ

Based on the concept of volume fraction, if neglecting the mass and
energy exchanges between the solid skeleton with the fluid, we
have the field equations of incompressible fluid-saturated porous
media.

The volume fractions satisfy

nS þ nF ¼ 1 ð2Þ

in which, na(a = S,F) is the volume fraction of the constituent /a.
Balance equation of mass is

ð _qaÞa þ qa div _xa ¼ 0; a ¼ S; F ð3aÞ

in which, qa is the partial density of /a, and qa = naqaR, here, qaR is
the real density, the symbol ð _�Þa ¼

oð�Þ
ot þ gradð�Þ � x0a denotes the

material time derivatives, x0a characterizes the constituent velocity
of /a.

Balance equations of momentum and momentum moment are

div Ta þ qaðba � €xaÞ þ p̂a ¼ 0; Ta ¼ TaT ; a ¼ S; F ð4Þ

Here, Ta is the Cauchy stress tensor, ba the body force density, p̂a is
the interaction between the solid skeleton with the fluid phase and

satisfies the relation: p̂S þ p̂F ¼ 0. And also, the superscript T de-
notes transpose.

Based on PMT, for the linear isotropic visco-elastic solid skele-
ton and nonviscous fluid, the stress tensor Ta and the force p̂a, as
a consequence of incompressibility (qaR = const), can be expressed
as

TS¼�nSpIþTSE; TF ¼�nFp IþTFE; p̂F ¼pgradnFþ p̂FE ð5aÞ
TFE¼0; p̂FE¼�Svð _uF� _uSÞ ð5bÞ

in which, ua = xa � Xa(a = S,F) are the displacements of solid skele-
ton and fluid phase, respectively, TS and TF are the total stress ten-
sors of solid skeleton and fluid phase, respectively, TSE and TFE are
the corresponding extra Cauchy stress tensors, respectively, p is
the effective pore pressure of incompressible fluid phase. Set effec-
tive specific weight of fluid is cFR = qFR|b|, the coupled interaction
between the solid skeleton with the fluid phase can be described
by Sv ¼ ðn

F Þ2cFR

jF , in which, jF is Darcy permeability coefficient.
The volume fraction of solid skeleton nS can be denoted as

nS ¼ nS
0Sðdetðxi;KÞÞ�1 � nS

0S in the case of small deformation. Namely,
the volume fraction nScan be approximated by nS

0S, and nS
0S is the

solid volume fraction in the initial configuration.
When a differential-type visco-elastic constitutive relation is

applied to describe the material characteristics of solid skeleton,
the constitutive equation of solid skeleton can be expressed as

P0SSE ¼ Q 0eS; P00ISE
T ¼ Q 00IS

e ð6Þ

in which, SSE and eS are the effective stress and strain deviators,
respectively, ISE

T ¼ TSE
ii ; I

S
e ¼ eS

ii are the first invariants of Cauchy ex-
tra stress tensor TSE and strain tensor eS, P0, Q0 and P00, Q00 are differ-
ential operators describing the viscous characteristics of material,
and given as: P0 ¼

P
p0i

di

dti ;Q
0 ¼

P
q0i

di

dti ; P
00 ¼

P
p00i

di

dti ;Q
00 ¼

P
q00i

di

dti,
here, p0i; q

0
i;p
00
i ; q

00
i are material parameters. When P0 = 1, Q0 = 2G and

P00 = 1, Q00 = 3K, Eq. (6) gives the elastic constitutive equation of solid
skeleton. In addition, the relations between the effective stress SSE

and strain deviator eS with the Cauchy extra stress tensor TSE and
strain tensor eS are given as

TSE ¼ SSE þ 1
3

ISE
T ; eS ¼ eS þ 1

3
IS
e ð7Þ

In the case of small deformation, the linearized Langrangian strain
tensor is defined as

ES ¼ 1
2
ðgraduS þ gradT uSÞ ð8Þ

2.2. Boundary and initial conditions

To solve the problem, it is necessary to give the boundary con-
ditions of solid skeleton and fluid phase. For the solid skeleton, the
boundary conditions of displacement and stress can be given as

uS ¼ uSðX; tÞ; ðX; tÞ 2 Su � ½0;þ1Þ ð9aÞ
F ¼ FðX; tÞ; ðX; tÞ 2 ST � ½0;þ1Þ ð9bÞ

in which, S = Su [ ST, F = n � (FS + FF), and n is the outside unit normal
of the surface ST, �uS and F are the designated displacement and
force vectors on the surface Su and ST.

For the fluid phase, generally speaking, the porous pressure p or
the seepage velocity vector Q is given on the designated boundary,
and the boundary conditions can be expressed as

p ¼ pðX; tÞ; ðX; tÞ 2 Sp � ½0;þ1Þ ð9cÞ
Q ¼ QðX; tÞ; ðX; tÞ 2 SQ � ½0;þ1Þ ð9dÞ

in which, S = Sp [ SQ, Q = n � (nFFF).
One can assume that the initial conditions are
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