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a b s t r a c t

Column constitutive relationships and buckling equations are derived using a consistent
hyperelastic neo-Hookean formulation. It is shown that the Mandel stress tensor provides
the most concise representation for stress components. The analogous definitions for uni-
axial beam plane stress and plane strain for large deformations are established by examin-
ing the virtual work equations. Anticlastic transverse curvature of the beam cross-section is
incorporated when plane stress or thick beam dimensions are assumed. Column buckling
equations which allow for shear and axial deformations are derived using the positive def-
initeness of the second order work. The buckling equations agree with the equation derived
by Haringx and are extended to incorporate anticlastic transverse curvature which is
important for low slenderness, high buckling modes and with increasing width to thick-
ness ratio. The work in this paper does not support the existence of a shear buckling mode
for straight prismatic columns made of an isotropic material.

Crown Copyright � 2008 Published by Elsevier Ltd. All rights reserved.

1. Introduction

The correct mechanical model for the inclusion of shear deformations in the analysis of column buckling has been debated
by various researchers for many years. The inclusion of shear deformations in the analysis of column buckling is very impor-
tant for the design of helical springs, elastomeric bearings, sandwich plates and built-up and laced columns (see Attard, 2003;
Bazant, 2003; Bazant and Beghini, 2004; Bazant and Beghini, 2006; Engesser, 1889; Engesser, 1891; Gjelsvik, 1991; Haringx,
1948; Haringx, 1949; Haringx, 1942; Kardomateas and Dancila, 1997; Reissner, 1972; Reissner, 1982; Simo et al., 1984;
Simo and Kelly, 1984; Timoshenko and Gere, 1963; Zielger, 1982). Shear deformations during buckling are also important
in the analysis of the compressive strength of fiber composites where fiber microbuckling models have been postulated
(see Budiansky and Fleck, 1994; Fleck and Sridhar, 2002). The first to modify the Euler column buckling formula to include
shear deformations was Engesser (1889),Engesser (1891). Engesser’s formula for the critical buckling Pcr;Eng of a prismatic
straight column is very simple and is often written in the form:

1
Pcr;Eng

¼ 1
Peuler

þ 1
PS
) Pcr;Eng

PS
¼

Peuler
PS

1þ Peuler
PS

ð1Þ

where Peuler is the Euler buckling load and PS ¼ GA is a so-called ‘‘shear buckling load” (G is the shear modulus and A the
cross-sectional area). This shear buckling load is equivalent to Rosen (1965) microbuckling shear buckling equation,
although in the microbuckling case, shear buckling is the limit taken for very large buckling wavelength. As a column’s
slenderness is reduced, the Engesser’s critical buckling load has an upper limit of the shear buckling load GA. A critical
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question in this paper is whether shear buckling is predicted for prismatic straight columns made of an isotropic
material?

Engesser’s solution Pcr Eng is rewritten in Eq. (2) in which l is the effective length, r ¼
ffiffiffiffi
Izz
A

q
the radius of gyration,

Izz ¼
RR

Ay2dA is the second moment of area and E the elastic modulus. Haringx (1942) developed an alternate buckling for-
mula (Pcr Har given in Eq. (2)) which unlike Engesser formula, predicted an infinite buckling load as the slenderness
approached zero

Pcr Eng ¼
p2EA

l2

r2 þ p2 E
G

� � ; Pcr Har ¼
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2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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r
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 !
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Haringx’s formula was also adopted for helical springs. Assuming that the pitch of a compressed helical spring is insignifi-
cant, a single coil is modeled by circular rings connected by rigid bars at the center of the rings. The spring is thus replaced by
an equivalent prismatic rod of suitable equivalent rigidities (the simplest approximation is to use an equivalent Poisson’s
ratio of m ¼ �0:8 and l=r ¼ 0:94l=Ro where Ro is the radius of the spring helix). As well, to take account of axial shortening
the following substitutions were made (see Timoshenko and Gere (1963)):

l ¼ lo 1� Pcr

EAo

� �
; A ¼ Ao 1� Pcr

EAo

� �
; Izz ¼ Izzo 1� Pcr

EAo

� �
ð3Þ

where lo, Ao and Izzo are the original (before deformation) length, area and second moment of area of the spring, respectively.
Allowing for shear and axial deformation the buckling formula derived in Attard (2003), Timoshenko and Gere (1963) and
Goto et al. (1990) is given below and is here called the modified Haringx formula:
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Haringx’s formula and the modified Haringx formula agreed well with the experimental results for short rubber rods and
helical springs, respectively as shown in Figs. 1 and 2. For the helical springs the experimental results showed that for small
slenderness, springs do not buckle below a slenderness of about 4.9. This observation agreed with the modified Haringx’s
formula but not with Engesser’s which predicted buckling for any slenderness. As can be seen in these figures, Engesser’s
formula did not match the experimental results. It should be noted that both Engesser’s and Haringx’s derivations are based
on a simple beam model called the Timoshenko beam. Plane sections are assumed but are not necessarily perpendicular to
the centroidal axis of the beam.

There have been several authors who have discussed the merits of the differing approaches of Engesser and Haringx (see
Attard, 2003; Bazant, 2003; Bazant and Beghini, 2004; Bazant and Beghini, 2006; Gjelsvik, 1991; Kardomateas and Dancila,
1997; Reissner, 1982; Simo et al., 1984; Zielger, 1982; Bazant and Cedolin, 1991). The arguments for and against were de-
bated by Zielger (1982) who supported Engesser’s approach, and Reissner (1982) who supported Haringx’s approach. Zielger
(1982) incorporated axial as well as shear deformations and derived the following formula which he called the modified Eng-
esser formula:

0
0 2 4 6 8

I/r

10 12 14

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
cr

/E
A

Haringx 1949 Circular Rubber Rod
Haringx 1949 Rectangular Rubber Rod
Haringx 1949 - No Buckle
Engesser Formula
Haringx Formula
Modified Engesser Formula
Modified Haringx Formula

Fig. 1. Comparison of column buckling test results for rubber Rods in Haringx (1949) with predictions of Haringx and Engesser formulas.
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