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The paper examines the feasibility of piezo-electric control of stiffened plates carrying axial compression
and subject to interaction of local and overall buckling. A simple control strategy involving piezo-electric
patches along the tips of the stiffeners carrying equal and opposite electric fields to resist bending of the
stiffeners was found to effectively counteract the adverse effects of mode interaction and imperfection-
sensitivity. For the dynamic problem, this strategy needed to be supplemented with patches attached to
the surfaces of the plate in the middle of the panel to damp out local buckling oscillations. Two panels
were considered, these being scaled replicas of each other. This enabled an examination of the scaling
laws of response with practical applications in view. The results demonstrate that the structural perfor-

mance of optimally designed stiffened structures can be enhanced with minimal energy consumption by
appropriately designed piezo-electric patch configuration.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Thin-walled structures such as stiffened plates and shells fabri-
cated out of high strength materials are ubiquitous in aerospace
structures. These are prone to buckle in a variety of modes with
a strong possibility of adverse mode interaction whenever sub-
jected to axial compression and/or bending. Optimally designed
stiffened plates subject to compression tend to fail by an interac-
tion of overall and local buckling, and are imperfection-sensitive.
This results in an erosion of their projected load carrying capacity
based on the critical loads as determined from a linear stability
analysis (Thompson and Hunt, 1973; Tvergaard, 1973; Sridharan
et al., 1994; Sridharan and Kasagi, 1997). As the axial compression
carried becomes a sizable fraction of the critical load, these struc-
tures exhibit large amplitude oscillations under disturbances such
as lateral acoustic pressure and could experience dynamic instabil-
ity by divergence. For these structures, the load corresponding to
dynamic instability can be significantly less than that which would
cause collapse under static conditions (Budiansky, 1965).

Literature on piezo-electric control of flutter, buckling and non-
linear response of plate structures is extensive and we can do no
more than mention a few topics investigated in this field: enhance-
ment of column flutter and buckling responses (Wang and Quek,
2002), geometrically nonlinear response of piezo-laminated plates
(Rabinovitch, 2005), and active control of nonlinear supersonic pa-
nel flutter (Abdel-Motagaly et al.,2005; Li et al.,2007). This paper ad-
dresses the issues involved in the piezo-electric control of an
“optimally designed” stiffened panel - optimal in the sense the local
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and overall buckling loads under axial compression are rendered
equal. Such structures are known to be imperfection-sensitive due
to nonlinear modal interaction. The example chosen for study is
however a simple one, a panel consisting of slender plate and rela-
tively stocky stiffener-designated in the literature as Tvergaard pa-
nel-1 (Tvergaard, 1973; Sridharan et al., 1994). It is shown that
feedback voltages across patches at the stiffener tips, proportional
to the bending strain have a salutary effect in stiffening the structure
atloads that exceed the capacity of the uncontrolled structure under
static conditions. In this case local buckling deflections are allowed
to occur, but they are seen to be innocuous in so far as the overall
bending has been controlled. Next the feasibility of damping out of
large amplitude oscillations liable to be triggered at loads smaller
than the dynamic buckling load is studied. As before the control is
exercised using piezo-electric actuators attached at the stiffener tips
only. The feedback gains are now proportional to the strain-rates
sensed at the stiffener tips. This has the effect of damping out overall
oscillations fairly quickly, but local mode vibrations tend to linger on
for along duration. In an attempt to damp out the local (plate) vibra-
tions additional control is exercised via piezo-electric actuator
patches placed at upper and lower surfaces at the middle of each
plate panel. The feedback gains are proportional to the sum of the
strain-rates sensed in the longitudinal and transverse directions.
This was found to be very effective in damping out the plate vibra-
tions. Thus by selective use of piezo-electric patch actuators at key
locations it was possible to maintain the stiffness of the stiffened
plate and damp out the oscillations. Finally the control of a panel
with scaled up geometry is studied with practical applications in
view with encouraging results.

The analysis of the stiffened plate employs an approach in
which the interaction is accounted for by embedding the local


mailto:ssrid@seas.wustl.edu
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr

1528 S. Sridharan, S. Kim/International Journal of Solids and Structures 46 (2009) 1527-1538

buckling deformation (Sridharan et al., 1994). This approach iso-
lates the local buckling deformation, together with the second or-
der effects, its variation spatially over the panel and the
corresponding components of feedback voltage from the overall ef-
fects. This affords a greater insight into the response of the stiff-
ened panel than conventional finite element schemes and makes
possible a more focused control strategy. These aspects of analysis
are reviewed briefly in the following section. Nevertheless, the spe-
cific contribution of the paper is in the realm of establishing a via-
ble strategy of piezo-electric control of stiffened panels, with an
eye on the practical application.

2. Theory

In this section, the theory and formulation of the present finite
element model is outlined. Fig. 1 shows a “wide” stiffened plate
and a typical panel consisting of plate elements on either side of
a stiffener.

2.1. Displacement, strain and stress vectors

The displacement variables are:

{u}' = {u,v.w, o, ) (1)

where u, v and w are the displacement components in the axial (x-),
transverse (y-) and outward normal (z-) directions, respectively, at
any point on the middle surface plate or stiffener (Fig. 2) and «
and g are the rotations of the normal in the xz and yz planes, respec-
tively (Sridharan et al., 1992).

The generic strain vector {¢} may now be defined as in Reissner—
Mindlin theory:

{8} = {808, Dys Yoo Ay Loy Vo V) 2)
where

{8} = {80 8.7} (3a)
are the in-plane strain components at the plate mid-surface,

{0 = Do Ay Aoy} (3b)
are the curvature components, and

3 = 1y} (30)

are the transverse shearing strain components.

The generic stress vector {a} conjugate with {&} consist of stress
resultants. These consist of the force resultants {N} = {Ny, N, Ny},
moment resultants {M} = {My, M,, My,} and transverse shear forces
{Q} = {Q«x, Q). The generic stress-strain relations are taken in the
standard form:

ypical Stiffener

Direction of uniform
compression

Ni = Ay + By
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(4a—Db)
Q; = kCtyi (i=1,2) (4c)

where [A], [B], [D] are well known matrices in the literature on lay-
ered composites, G is the averaged transverse shear modulus, k is
the shear correction factor (=5/6) and t is thickness of the plate ele-
ment. These equations may be written in the abbreviated form:

g; = Hjij (5)

The following strain-displacement relations are used for the plate
structure:
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These are but von Karman plate equations modified to account for
transverse shear deformation and the large in-plane movements
of stiffeners such as occur under overall buckling/bending.

The strain-displacement relations can be expressed in the
abbreviated form:

& = Luyj(uy) + %Lzu‘(uj)
where L, strands for linear differential operators and L, for a qua-
dratic operators implicit in Eqs. 6(a-h).

Under axial compression there are two characteristic modes of
buckling, viz. the overall buckling associated with a long wave
mode and local buckling characterized by a sinusoidal mode with
a number of half waves (m). In the former stiffener undergoes sig-
nificant in-plane displacements whereas in the latter the plate-
stiffener junction remains immobile, as the plate buckles between
the stiffeners.

(i=1,...8) (j=1,...5) (7)

2.2. Solution of the local buckling problem

2.2.1. Linear stability analysis

The following notation will be employed in the following. A
superscript (1) indicates a first order local buckling quantity (Eigen
mode), a superscript (2) indicates a second order quantity and a

-

k Typical panel

Fig. 1. “Wide” stiffened plate and a typical panel.
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