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Abstract

This paper is concerned with the application of the p-Ritz method for the plastic buckling analysis of thick plates. In
order to allow for the effect of transverse shear deformation in thick plates, the Mindlin plate theory is adopted. The plastic
buckling behaviour of the plate is captured by using the incremental and deformation theories of plasticity. The material
property of the plate is assumed to obey the Ramberg–Osgood stress–strain relation. The p-Ritz method will be applied to
obtain the governing eigenvalue equation for the plastic buckling analysis of uniformly stressed plates with edges defined
by polynomial functions. In the p-Ritz method, the displacement functions of the plate are approximately represented by
the product of mathematically complete two-dimensional polynomial functions and boundary equations raised to appro-
priate powers that ensure the satisfaction of the geometric boundary conditions. The validity, convergence and accuracy of
the method were demonstrated for various plate shapes such as rectangular, triangular and elliptical shapes. A parametric
study was also undertaken to study the plastic buckling behaviour and the effect of transverse shear deformation.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The Ritz method is a commonly used method for plate analysis because of its simplicity. In this method, it
is necessary to approximate the displacement with suitable functions that satisfy the geometric boundary con-
ditions. By minimizing the total potential energy functional with respect to the parameterized displacement
functions, one obtains a system of homogeneous equations which forms the governing eigenvalue equation.
Since the convergence and accuracy of the method depend on the selection of appropriate displacement func-
tions, many researchers have proposed various admissible functions such as spline functions (Mizusawa et al.,
1979), and beam characteristic orthogonal polynomials (Bath, 1985). A breakthrough in automating the Ritz
method for analysis of a wide range of plate shapes and boundary conditions may be credited to Liew and
Wang (1992, 1993). They proposed that the Ritz functions be defined by the product of mathematically com-
plete two-dimensional polynomial functions and boundary equations raised to appropriate powers that ensure
the satisfaction of the geometric boundary conditions. They published a series of papers on the elastic buckling
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analysis of plates using the so-called p-Ritz method (Wang et al., 1993a; Wang et al., 1994; Liew and Wang,
1995). Smith et al. (1999) studied the convergence of simple polynomials as well as orthogonal polynomials
(such as Chebyshev, Legendre, Hermite, and Laguerre) as Ritz functions for uniaxial plate buckling analysis.
They concluded that the simple polynomial gives distinct advantages over the orthogonal polynomials due to
its simplicity in implementation and computational ease.

With regards to plastic buckling of plates, various theories of plasticity have been proposed in the literature.
These theories can be categorized mainly under the incremental (flow) theory of plasticity (Handelman and
Prager, 1948) and the deformation theory of plasticity (Illyushin, 1947). So far, only a few papers have
adopted the Ritz method for the plastic buckling analysis of plates despite extensive studies on their elastic
counterparts. Smith et al. (2003) used the Ritz method for the plastic local buckling analysis of steel plates
subjected to in-plane axial, bending and shear loading by using the incremental theory of plasticity. Their
study is, however, confined to the treatment of rectangular plates and is based on the classical thin plate
theory.

Prompted by the lack of rigorous treatment of the subject, we present the p-Ritz method for plastic buck-
ling analysis of arbitrarily shaped thick plates with boundaries defined by polynomial functions. In addition,
we also include the effect of transverse deformation in the formulation so that the buckling solutions are not
overpredicted when dealing with relatively thick plates. In order to capture the inelastic effect, we have
adopted the incremental and deformation theories of plasticity and the Ramberg–Osgood constitutive relation
for the plate material (Ramberg and Osgood, 1943). After providing the p-Ritz formulation for the plastic
buckling of plates, the validity, convergence and accuracy of the method in computing the plastic buckling
loads are demonstrated by considering rectangular, triangular and elliptical plate examples. The plastic buck-
ling behaviour and the effect of transverse shear deformation are also investigated.

2. Problem definition and formulation

Consider an isotropic, arbitrarily shaped plate of uniform thickness h and subjected to a uniform in-plane
compressive stress r as shown in Fig. 1. The plate edges may be defined by polynomial functions. The edges
may take on any combination of simply supported, clamped and free edges. The plate material is assumed to
obey the Ramberg–Osgood constitutive relation as depicted in Fig. 2. The problem at hand is to determine the
plastic buckling stress of such an in-plane loaded plate.

According to the Mindlin plate theory, the admissible velocity field is given by (Mindlin, 1951)

tx ¼ z/x; ty ¼ z/y ; tz ¼ w ð1a–cÞ

where /x and /y are the rates of rotations in the y and x directions, respectively, and w is the transverse veloc-
ity. The strain rates corresponding to Eq. (1a–c) are given by
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Fig. 1. Mindlin plate of arbitrary shape subjected to uniform in-plane stress r.
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