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a b s t r a c t

This work deals with the Cauchy problem in two-dimensional linear elasticity. The equations of the prob-
lem are discretized through a standard FEM approach and the resulting ill-conditioned discrete problem
is solved within the frame of the Tikhonov approach, the choice of the required regularization parameter
is accomplished through the Generalized Cross Validation criterion. On this basis a numerical experimen-
tation has been performed and the calculated solutions have been used to highlight the sensitivity to the
amount of known data, the noise always present in the data, the regularity of boundary conditions and
the choice of the regularization parameter. The aim of the numerical study is to implicitly device some
guidelines to be used in the solution of this kind of problems.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Inverse problems in elasticity is becoming an important emerg-
ing field whose engineering applications, following Bonnet and
Constantinescu (2005), can be grouped as follows:

� reconstruction of buried objects such as cracks, cavities and
inclusions or residual stresses;

� identification of constitutive properties also used in model
updating;

� identification of inaccessible boundary values (Cauchy problem).

The present work is devoted to the solution of Cauchy problem
in linear elasticity which can be formulated as follows: given the
tractions and displacements on the accessible part of the boundary
of an elastic body, to evaluate the same information on the inacces-
sible part of the boundary. This problem has many practical appli-
cations since in actual problems sometimes the data are not
complete. Moreover the same problem has to be solved, as a preli-
minary step, also in the identification of buried objects. In this case,
following the approach presented for elastic bodies in Alessandrini
et al. (2003) from a theoretical point of view and in Alessandrini et
al. (2005) in a numerical contest, a complete knowledge of the
traction and displacement fields along the boundary is required.

Due to the severity of the ill-posedness of the Cauchy problem,
see Belgacem (2007) for example, several solution methods were
proposed, as testified by the rich literature on the matter. They
can approximatively be grouped as follows.

1. The quasi-reversibility method introduced in Lattès and Lions
(1967) and used in the solution of the Laplace problem by using
the finite difference method in Klibanov and Santosa (1991) and
the mixed finite element method in Bourgeois (2005).

2. Iterative methods such as that presented in Kozlov et al. (1991)
and used in the framework of the boundary element method to
solve the Laplace equation, in Lesnic et al. (1997) and Jourhmane
et al. (2004), Helmholtz equation, in Marin et al. (2003a), station-
ary Stokes system, in Bastay et al. (2006), and linear elastic prob-
lems, in Marin et al. (2001, 2002a) and Comino et al. (2007). In
Lesnic et al. (1997) the problem of the convergence criterion is
also considered and in order to improve the convergence rate a
relaxation procedure is experimented in Jourhmane et al.
(2004) and Marin et al. (2001). The conjugate gradient strategy
is used in Hào and Lesnic (2000) and Bastay et al. (2001) for the
Laplace equation, in Marin et al. (2002b) for elasticity, in Marin
et al. (2003b) for Helmholtz-type equation and, finally, in Johans-
son and Lesnic (2006a) for determining the fluid velocity of a
slow viscous flow. A variant of the conjugate gradient strategy,
namely the Minimal Error Method, is used in Johansson and Les-
nic (2006b) for the reconstruction of a stationary flow, in Marin
(2009a) in the field of linear elasticity and in Marin (2009b) for
Helmholtz-type equations. Finally, the Landweber–Fridman iter-
ative method is used in Marin et al. (2004a) for Helmholtz-type
equation, in Marin and Lesnic (2005) for linear elasticity and in
Johansson and Lesnic (2007) for the reconstruction of a station-
ary flow.

3. Methods based on the minimization of an energy-like func-
tional as proposed in Andrieux et al. (2006) for solving the
Laplace equation and in Andrieux and Baranger (2008) for the
analysis of elastic systems.
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4. Methods based on the Tikhonov regularization (Tikhonov and
Arsenin, 1977) have been adopted in several contributions.
Among them we cite Cimetière et al. (2001) where the steady
state heat equation is solved through an iterative strategy
which allows to avoid the selection of the regularization param-
eter. In Marin and Lesnic (2002a) the elastic problem is solved
by using boundary elements and the criterion used to choose
the optimal solution is based on the discrepancy principle
coded in the Singular Value Decomposition. In Marin and Lesnic
(2002b) the optimal solution is selected by the L-curve crite-
rion. Marin and Lesnic (2003), again in the analysis of the elastic
problem by the boundary element method, identifies unknown
portions of the boundary by using the L-curve method as crite-
rion for selecting the regularization parameter and Marin et al.
(2004b) presents the comparison of various regularization
methods for solving problem associated with Helmholtz
equation.

Finally, in order to cite also some contributions which do not fit
the previous classification, in Burke et al. (2007) the identification
of residual stress field in an elastic body is obtained through a par-
tial polar decomposition, a sort of regularization similar to trun-
cated Singular Value Decomposition, based on a spectral
decomposition. Marin and Lesnic (2004), Marin (2005) and Wang
et al. (2006) use the method of fundamental solutions to build a
meshless strategy. Contributions (Yeih et al., 1993; Koya et al.,
1993) can be framed into the so-called ficticious boundary indirect
method, the first contribution proposes the theoretical approach
and the second one issues some numerical details. Other interest-
ing contributions are represented by Maniatty et al. (1989),
Zabaras et al. (1989) and Schnur and Zabaras (1990). Contribution
(Maniatty et al., 1989) proposes a simple diagonal regularization to
determine boundary tractions using the finite element method.
The concept of the spatial regularization is adopted in the frame
of the boundary element method in Zabaras et al. (1989) and of
the finite element method in Schnur and Zabaras (1990). Other pa-
pers use auxiliary data to recover boundary conditions. For exam-
ple Maniatty and Zabaras (1994) uses the internal displacement

field while Turco (1998, 1999, 2001) use the internal stress or
strain fields.

The aim of the present work is to present a qualitative and
quantitative study on the solution of the Cauchy problem in linear
elasticity. The study is performed analyzing two-dimensional elas-
tic problems by a standard FEM discretization. The discrete ill-
posed problem derived through the discretization is tackled with
the Singular Value Decomposition (Golub and Van Loan, 1996) of
the problem matrix and the searched solution is calculated on
the basis of a Tikhonov regularization (Tikhonov and Arsenin,
1977) of the problem.

Roughly speaking, this approach perturbs the singular values of
the system matrix shifting them by an unknown parameter which
plays a fundamental role in the solution of the system. The param-
eter, called the regularization parameter, makes possible to evaluate
a solution of the problem and filter out the noise always present in
the data. Its selection must be performed by using an external cri-
terion, the Generalized Cross Validation (Golub et al., 1979) crite-
rion has been adopted in the present work.

The described numerical approach has been used to study the
sensitivity of the obtained solution with respect to some factors:
the ratio between the length of the accessible part of the boundary
and the length of the inaccessible part of the boundary, i.e. the
amount of Cauchy data that can be used to solve the problem;
the errors contained in the known boundary data; the presence
of discontinuities in the domain of the problem to be solved and
in the boundary conditions to be reconstructed; the chosen regu-
larization parameter. The main aim of this numerical experimenta-
tion is to devise some guidelines useful in the solution of this kind
of problems.

The paper is organized as follows. Next section describes the
formulation of Cauchy problem in linear elasticity and its discreti-
zation through a standard finite element approach. Section 3 dis-
cusses the algorithm used to reconstruct the unknown boundary
values. Several numerical results are presented and discussed in
Section 4 and, finally, some concluding remarks, reported in Sec-
tion 5, close the paper.

2. Problem keynotes

Let us consider a generic elastic body B loaded by the bulk force
f and the traction t on the boundary @B. The associated potential
energy functional can be formulated as follows:
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Fig. 1. Hollow cylinder under pressure test: geometry, load condition and finite element discretization.

Table 1
Meshes used for the analysis of the hollow cylinder.

Thin Medium Thick

64 � 64 � 2 32 � 48 � 5 32 � 64 � 10
96 � 96 � 3 64 � 96 � 10 64 � 128 � 20
128 � 128 � 4 128 � 192 � 20 96 � 192 � 30
256 � 256 � 8
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