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a b s t r a c t

Love waves are dispersive interfacial waves that are a mode of response for anti-plane motions of an elas-
tic layer bonded to an elastic half-space. Similarly, Stoneley waves are interfacial waves in bonded con-
tact of dissimilar elastic half-spaces, when the displacements are in the plane of the solids. It is shown
that in slow sliding, long-wavelength Love and Stoneley waves are destabilized by friction. Friction is
assumed to have a positive instantaneous logarithmic dependence on slip rate and a logarithmic rate
weakening behavior at steady-state.

Long-wavelength instabilities occur generically in sliding with rate- and state-dependent friction, even
when an interfacial wave does not exist. For slip at low rates, such instabilities are quasi-static in nature,
i.e., the phase velocity is negligibly small in comparison to a shear wave speed. The existence of an inter-
facial wave in bonded contact permits an instability to propagate with a speed of the order of a shear
wave speed even in slow sliding, indicating that the quasi-static approximation is not valid in such
problems.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Destabilization of interfacial elastic waves due to friction has
been a topic of some recent investigations (Adams, 1995; Ranjith
and Rice, 2001). For in-plane elasticity problems, where displace-
ments are confined to the plane of the solids, two well-known
interfacial waves are the Stoneley wave (Stoneley, 1924) and the
slip wave (Achenbach and Epstein, 1967). The Stoneley wave
occurs in bonded contact of dissimilar elastic half-spaces while
the slip wave, also called the generalized Rayleigh wave, is for a
freely slipping interface between two half-spaces. There are no
analogues of the Stoneley wave and the slip wave in anti-plane
elasticity, where the displacement is normal to the plane of the sol-
ids. However, an interface wave solution does exist in the bonded
contact of a finite layer on a half-space. This is the Love wave (Love,
1911). The Love wave differs from the Stoneley and slip waves in
that (a) it always exists if the shear wave speed of the layer is
greater than that of the half-space whereas the other two interfa-
cial waves exist only when the shear wave speeds of the solids are
not very different (b) its speed along the interface is greater than
the shear wave speed of the layer but less than that of the sub-
strate, while the other two waves are subsonic (c) it is dispersive
and the dispersion relations are multi-valued.

In this paper, two problems are studied involving dissimilar
materials that permit interfacial waves in bonded contact. Anti-
plane sliding of a finite layer on an elastic half-space is first stud-

ied. In slow frictional sliding, it is shown that the Love wave is
destabilized at long wavelengths. In-plane sliding of dissimilar
elastic half-spaces is subsequently analyzed. It is shown that
long-wavelength Stoneley waves are also destabilized in slow
sliding.

2. The anti-plane problem

In this section, the equation governing the stability of steady
sliding of an elastic layer on an elastic half-space is derived. The
perturbations from steady sliding are assumed to be transverse
to the direction of slip (i.e., anti-plane sliding). The elastodynamic
relation between slip and shear stress perturbations is first de-
rived. A friction law which also relates the slip and shear stress
perturbations is then introduced. These two relations are used to
obtained the equation governing slip stability.

Consider an isotropic elastic layer of thickness h sliding on an
isotropic elastic half-space with a steady rate Vo (Fig. 1). The steady
motion is due to an applied shear stress so which is at the friction
threshold, so = fro, where ro is the compressive normal stress on
the boundary of the layer and f is the friction coefficient at slip rate
Vo. The shear modulus, density and shear wave speed of the layer
are denoted by l, q and cs, respectively, and corresponding proper-
ties of the half-space are denoted by l

0
, q

0
and c0s.

A Cartesian coordinate system is located as shown in Fig. 1 so
that the interface between the solids is at x2 = 0 and the layer slides
in the x3 direction. The elastic fields are assumed to be independent
of the x3 coordinate. We are interested in the relation between slip
and stress perturbations at the interface when the perturbation is
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transverse to the direction of slip, namely in the x1 direction. If
ui(x1, x2, t), i = 1,2,3 denote the displacement field, due to isotropy
of the solid, the only displacement component is that in the direc-
tion of slip:

u1 ¼ u2 ¼ 0;
u3 ¼ u3ðx1; x2; tÞ:

ð1Þ

Let sij(x1,x2, t), i, j = 1,2,3 denote the stresses. The only non-zero
stresses corresponding to the displacement field Eq. (1) are
s13 = s31 and s23 = s32. They are given by

s13 ¼ l @u3

@x1
;

s23 ¼ l @u3

@x2
;

ð2Þ

the latter being the traction component on planes normal to the x2

direction.
For the layer, the equation of motion in terms of the stresses is

@s13

@x1
þ @s23

@x2
¼ q

@2u3

@t2 : ð3Þ

Substituting for the stresses from Eq. (2), one gets

@2u3

@x2
1

þ @
2u3

@x2
2

¼ 1
c2

s

@2u3

@t2 ; ð4Þ

where cs ¼
ffiffiffiffiffiffiffiffiffi
l=q

p
. Similarly, the equation of motion of the elastic

half-space in the region x2 < 0 is

@2u3

@x2
1

þ @
2u3

@x2
2

¼ 1
c02s

@2u3

@t2 : ð5Þ

where c0s ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
l0=q0

p
is the shear wave speed of the half-space.

Slip at rate Vo and a perturbation from it in a single Fourier
mode of wavenumber k can be represented by a displacement field
of the form

u3ðx1; x2; tÞ ¼ Vot þ Uþðk;pÞeikxeax2 ept; x2 > 0;

u3ðx1; x2; tÞ ¼ U�ðk;pÞeikx1 ea0x2 ept; x2 < 0:
ð6Þ

where p is a complex variable, dependent on k, which characterizes
the time response to the perturbation. a(k,p) and a0(k,p) are to be
determined so that the governing equations of motion are satisfied.
Substituting into the equation of motion for the layer, Eq. (4), gives

a2 ¼ k2 þ p2

c2
s
: ð7Þ

Defining

a ¼ jkj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2=k2c2

s

q
; ð8Þ

where ffiffip denotes the analytic continuation of the positive square
root function, both a and �a solve Eq. (7). A convenient choice of
branch cuts in the complex p-plane is from the branch points
p = ±i |k| cs to p =1 along the imaginary axis, away from the origin.
The general form of the displacement in the layer is therefore

u3ðx1; x2 > 0; tÞ ¼ Vot þ Uþ1 ðk;pÞe�ax2 þ Uþ2 ðk;pÞeax2
� �

eikx1 ept ð9Þ

The stress component s23 in the layer corresponding to the
above displacement field is

s23ðx1; x2 > 0; tÞ ¼ so þ l �aUþ1 ðk;pÞe�ax2 þ aUþ2 ðk; pÞeax2
� �

eikx1 ept

ð10Þ

The perturbations at the interface do not alter the applied shear
stress so on the boundary of the layer. Thus s23(x1,h, t) = so, so that

�Uþ1 e�ah þ Uþ2 eah ¼ 0: ð11Þ

An analogous development for the half-space x2 < 0 follows. The
displacement field in the half-space is of the form

u3ðx1; x2 < 0; tÞ ¼ U�ðk;pÞeikx1 ea0x2 ept : ð12Þ

Substituting into the equation of motion for the half-space gives

a02 ¼ k2 þ p2

c02s
; ð13Þ

which has the solution

a0 ¼ jkj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2=k2c02s

q
: ð14Þ

Branch cuts are defined as before from p ¼ �ijkjc0s to p =1 along
the imaginary axis, away from the origin. This ensures that
Re(a

0
) P 0 for any p. It is noted that �a

0
is not a valid solution to

Eq. (13) since it gives rise to an unbounded displacement field as
x2 ? �1.

The stress component s23 in the half-space is then

s23ðx1; x2 < 0; tÞ ¼ so þ l0a0U�ðk; pÞea0x2 eikx1 ept: ð15Þ

The slip at the interface is

dðx1; tÞ ¼ u3ðx1; x2 ¼ 0þ; tÞ � u3ðx1; x2 ¼ 0�; tÞ
¼ Vot þ ½Uþ1 þ Uþ2 � U��eikx1 ept: ð16Þ

Denoting

Dðk; pÞ � Uþ1 ðk; pÞ þ Uþ2 ðk;pÞ � U�ðk; pÞ; ð17Þ

the slip can be written as

dðx1; tÞ ¼ Vot þ Dðk;pÞeikx1 ept: ð18Þ

The traction component of stress at the interface

sðx1; tÞ ¼ s23ðx1; 0; tÞ � so þ Tðk;pÞeikx1 ept ð19Þ

is continuous. From Eqs. (10) and (15), this requires

�laUþ1 þ laUþ2 ¼ l0a0U�: ð20Þ

Eqs. (11), (17) and (20) constitute a system of linear algebraic equa-
tions for Uþ1 ;U

þ
2 and U� in terms of D. Solving that system,

U� ¼ � la
laþ l0a0 coth ah

D: ð21Þ

The shear stress at the interface is then

sðx1; tÞ ¼ so �
l0a0la

laþ l0a0 coth ah
Dðk;pÞeikx1 ept: ð22Þ

The amplitudes of the shear stress and slip perturbations at the
interface thus satisfy

h x2

x3

Fig. 1. Geometry for the anti-plane sliding problem.
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