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Abstract

Physical properties of many natural and man-made materials can be modelled using the concept of poroelasticity. Some
porous materials, in addition to the network of pores, contain larger inhomogeneities such as inclusions, cavities, fractures
or cracks. A common method of detecting such inhomogeneities is based on the use of elastic wave scattering. We consider
interaction of a normally incident time-harmonic longitudinal plane wave with a circular crack imbedded in a porous med-
ium governed by Biot’s equations of dynamic poroelasticity. The problem is formulated in cylindrical co-ordinates as a
system of dual integral equations for the Hankel transform of the wave field, which is then reduced to a single Fredholm
integral equation of the second kind. It is found that the scattering that takes place is predominantly due to wave induced
fluid flow between the pores and the crack. The scattering magnitude depends on the size of the crack relative to the slow
wave wavelength and has it’s maximum value when they are of the same order.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Physical properties of many natural and man-made materials, such as rocks, soils, foams, biological tissues
and construction materials, can be modelled using the concept of poroelasticity. A poroelastic material con-
sists of an elastic frame permeated by an interconnected pore space filled with a Newtonian fluid. Many por-
ous materials, in addition to the network of pores, contain larger inhomogeneities such as inclusions, cavities,
fractures or cracks. A common method of detecting such inhomogeneities is based on the use of elastic wave
scattering. This method is widely used in such diverse applications as non-destructive testing and oil explora-
tion. The effect of a distribution of inhomogeneities on the passing wave can be estimated using multiple-scat-
tering theory. This approach requires knowledge of the scattering that takes place due to the presence of a
single inhomogeneity, which is the subject of this paper.
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We consider the interaction of a plane longitudinal wave in a fluid-saturated porous medium with an open
oblate spheroidal crack of radius a and small thickness 2c� a placed perpendicular to the direction of wave
propagation. The background porous medium is assumed to be governed by Biot’s equations of dynamic poro-
elasticity (Biot, 1962). This poroelastic problem is analogous to the problem of scattering by a crack in an elastic
medium (Robertson, 1967; Garbin and Knopoff, 1973; Piau, 1979). In particular, Robertson (1967) formulated
this problem in cylindrical co-ordinates as a system of dual integral equations in the Hankel transform of the
wave field, which was then reduced to a Fredholm equation of the second kind. For fluid-saturated porous mate-
rials the interaction differs from that of the corresponding elastic scattering, as it involves flow of the pore fluid
between the crack and the host medium, induced by the passing wave. This effect is particularly significant for
thin cracks, as their high compliance (compared to that of the relatively stiff pores) causes the fluid to flow in and
out of the crack during rarefaction and compression wave cycles. Recently, similar problems have been investi-
gated in the fields of poroelasticity and the mathematically analogous thermoelasticity. Jin and Zhong (2002)
investigated the dynamic stress intensity factor of a circular crack in an infinite poroelastic solid, however they
only treated the case of impermeable crack surfaces. Sherief and El-Maghraby (2003) solve a dynamical problem
for an infinite thermoelastic solid with an internal circular crack which is subjected to prescribed temperature
and stress distributions. We apply a similar approach to the scattering by a crack in a porous medium.

We restrict the analysis to frequencies that are small compared to Biot’s characteristic frequency. For typ-
ical porous materials such as reservoir rocks and soils this assumption is appropriate for frequencies of up to
10–100 kHz.

2. Problem formulation

2.1. Equations of poroelasticity

We consider an incident plane longitudinal wave, harmonic in time, propagating in a fluid-saturated porous
medium in the positive direction of the z-axis of a cylindrical co-ordinate system. This wave can be represented
as the displacement field uðiÞz ¼ u0eik1z, where k1 is the wavenumber. We aim to derive the scattered field u(r)
that results from interaction between the incident wave and the crack, which occupies the circle 0 6 r 6 a

in the plane z = 0. The total displacement field is therefore uðtÞðrÞ ¼ uðiÞz az þ uðrÞ, where az is a unit vector direc-
ted along the z-axis.

Since we have geometrical symmetry about the crack plane z = 0, both the scattered and total displacement
fields satisfy the following equations of dynamic poroelasticity (Biot, 1962) in the semi-infinite poroelastic
medium z P 0:

r � r ¼ �x2ðquþ qfwÞ; ð1Þ
rp ¼ x2ðqf uþ qwÞ; ð2Þ

where w = /(U � u) is the relative fluid displacement, / is the medium porosity, U is the average absolute fluid
displacement, x is the angular wave frequency, qf and q are the densities of the fluid and of the overall med-
ium. At low frequencies q(x) � ig/jx (Biot, 1956) is a frequency-dependent coefficient responsible for viscous
and inertial coupling between the solid and fluid displacements where g is the fluid viscosity and j is the intrin-
sic permeability of the medium. r and p are the total stress tensor and fluid pressure, which are related to the
displacement vectors via the constitutive relations

r ¼ ½ðH� 2lÞr � uþ aMr � w�Iþ l½ruþ ðruÞT �; ð3Þ
p ¼ �aMr � u�Mr � w: ð4Þ

In Eqs. (3) and (4) l is the shear modulus of the solid frame, a = 1 � K/Kg is the Biot–Willis coefficient
(Biot and Willis, 1957),

M ¼ ða� /Þ
Kg

þ /
K f

� ��1

ð5Þ

is the so-called pore space modulus,
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