

Contents lists available at ScienceDirect

Diabetes Research and Clinical Practice

journal homepage: www.elsevier.com/locate/diabres

Transcription factor AP-2 β inhibits glucose-induced insulin secretion in cultured insulin-secreting cell-line

Shuichi Tsukada, Masa-aki Kobayashi, Shintaro Omori, Hiroyuki Unoki, Shiro Maeda*

Laboratory for Endocrinology and Metabolism, RIKEN Center for Genomic Medicine, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan

ARTICLE INFO

Article history:
Received 3 March 2009
Received in revised form
12 June 2009
Accepted 15 June 2009
Published on line 10 July 2009

Keywords: AP-2β Insulin secretion Type 2 diabetes

ABSTRACT

Aim: We previously identified the transcription factor activating enhancer-binding protein- 2β (AP-2 β) gene as a new candidate for conferring susceptibility to type 2 diabetes. To ascertain the possible involvement of AP-2 β in the pathogenesis of type 2 diabetes we examined the effects of AP-2 β on glucose-induced insulin secretion.

Methods: We measured the insulin secretion stimulated by glucose, tolbutamide, or KCl in the HIT-T15 cells infected with adenovirus vectors encoding AP-2 β or LacZ (control). Results: We identified clear expression of AP-2 β in isolated rat pancreatic islets and in HIT-T15 cells. Glucose-induced increase in insulin secretion was significantly inhibited in AP-2 β -overexpressing cells (LacZ, 5.0 ± 0.8 ng h⁻¹ mg⁻¹ protein; AP-2 β , 1.7 ± 0.2 ng h⁻¹ mg⁻¹ protein; P = 0.0015), whereas insulin expression was the same in both types of cells. Tolbutamide-induced insulin secretion was also suppressed in the AP-2 β -overexpressing cells, but KCl-induced insulin secretion was not affected by AP-2 β overexpression. In addition, Kir6.2 and glucokinase expression was significantly decreased in the AP-2 β -overexpressing cells. Conclusion: We identified for the first time that AP-2 β expressed and functioned in insulinsecreting cell-line HIT-T15. These results suggest that AP-2 β contributes to susceptibility to type 2 diabetes by inhibiting glucose-induced insulin secretion in pancreatic β cells.

© 2009 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Type 2 diabetes affects more than 240 million people worldwide [1]. Although the precise mechanism underlying the pathogenesis of type 2 diabetes remains unclear, this disease is thought to be caused due to insulin resistance in peripheral tissues together with dysfunction of β cells in the pancreatic islets [2,3].

We have identified the human AP-2 β transcription factor gene (TFAP2B) located on chromosome 6p12 as a candidate susceptibility gene for type 2 diabetes [4]. Variations in the first intron of this gene have been shown to be significantly associated with type 2 diabetes in Japanese and British populations [4] and to directly affect the transcriptional

activity of the gene [5]. The AP2 transcription factor family comprises 4 members – AP- 2α , AP- 2β , AP- 2γ , and AP- 2δ – each encoded by a separate gene. AP-2 proteins homo- and heterodimerize through a unique C-terminal helix–spanhelix motif and bind palindromic DNA recognition sequences (consensus, 5'-GCCN3GGC-3') through the basic domain that lies immediately at the N-terminal of the dimerization motif. The dimerization/DNA-binding region is highly conserved among the AP-2 isoforms. AP-2 factors appear to execute crucial, overlapping, and yet distinct functions during embryonic development and malignant transformation. In humans, mutation of AP- 2β gene causes Char syndrome, a condition characterized by patent ductus arteriosus and variable degrees of facial dysmorphism and

^{*} Corresponding author. Tel.: +81 45 503 9595; fax: +81 45 503 9567. E-mail address: smaeda@src.riken.jp (S. Maeda).

hand abnormalities [6]. However, any abnormality in the glucose metabolisms has not been reported in subjects with Char syndrome or in mice lacking tfap2b, and thus underlined mechanisms how AP-2 β contributes to the pathogenesis of type 2 diabetes have not been elucidated yet.

AP-2 β expression has been preferentially observed in human adipose tissues and found to be increased during adipocyte differentiation in mouse 3T3-L1 adipocytes [4]. Further, we found that AP-2 β overexpression leads to lipid accumulation by enhancing glucose transport, thereby inducing insulin resistance in 3T3-L1 adipocytes [7]. AP-2 β overexpression in 3T3-L1 adipocytes decreases the expression and secretion of adiponectin and increases those of interleukin-6 (IL-6) [8]. Therefore, AP-2 β might play significant roles in regulating adipocyte functions; however, the functional roles of AP-2 β in pancreatic β cells, which are another important type of cells associated with the pathogenesis of type 2 diabetes, have not been investigated thus far.

In this study, we identified for the first time that AP- 2β expressed and functioned in insulin-secreting cell-line HIT-T15, and proved that AP- 2β could inhibit glucose-induced insulin secretion.

2. Materials and methods

2.1. Materials

HIT-T15 cell-line, derived from hamster islet cells transformed with SV40 T-antigen [9], was obtained from Dainippon Pharmaceutical (Osaka, Japan). EX Taq HS DNA polymerase were purchased from Takara Bio Inc. (Otsu, Shiga, Japan), and SYBR Green I was purchased from Cambrian Chemicals Inc. (Oakville, Ontario, Canada).

2.2. Preparation of adenovirus vector encoding hamster $AP-2\beta$

Hamster AP-2 β cDNA was generated by amplification of HIT-T15 cDNA, using the following primers: sense, 5′-CCT CGC AGG AAT GCACTC ACC TCCT-3′; antisense, 5′-TCATTT CCT GTGTTT CTC CTC CTT G-3′. The amplified products were separated on a 0.8% agarose gel, and the desired band was purified using the MinElute Gel Extraction Kit (QIAGEN, Valencia, CA). The purified hamster AP-2 β cDNA was subcloned into the pCR2.1-TOPO vector (Invitrogen, Carlsbad, CA) and verified by direct sequencing to confirm that the obtained fragment corresponded to

Gene		Sequence
Human AP-2β	Sense primer Antisense primer TaqMan probe	5'-AACCTATTGGACCAGTCAGTCATTAA-3' 5'-AAAATACCTCGCCGGTGTTG-3' 5'(FAM)-CCCTCCCAAATCTGTGACTTCTCTAATGATGA-(TAMRA)3'
Rat and HIT-T15 AP-2β	Sense primer Antisense primer TaqMan probe	5'-GCTCTGGAAACTCGTGGAGAA-3' 5'-CAGAGCCCAGCTGAGAGAGTCT-3' 5'(FAM)-CACGATGGCGTCCCAAGCCATAG-(TAMRA)3'
HIT-T15 β-actin	Sense primer Antisense primer TaqMan probe	5'-CGTGCGTGACATTAAAGAGAA-3' 5'-TGGATGCCACAGGATTCCAT-3' 5'(FAM)-CCACTGCCGCATCCTCTTCCTCC-(TAMRA)3'
HIT-T15 Insulin	Sense primer Antisense primer	5'-AGAAGCCATCAGCAAGCAGG-3' 5'-AGAGTGCCTCCACAAGGTGG-3'
HIT-T15 GLUT2	Sense primer Antisense primer	5'-TCTGCTTCCAGTACATTGCGGACT-3' 5'-CTGTACAAATGGAATTCCTGG-3'
HIT-T15 SUR1	Sense primer Antisense primer	5'-TGTCATCATTCTGCTGGCTCCTGT-3' 5'-TTTCCTTCCTGCGTGTCTTCTCCA-3'
HIT-T15 Kir6.2	Sense primer Antisense primer	5'-AAGGCCCGCACCTCCTATCT-3' 5'-TGGAGTAGTCCACAGAATAG-3'
HIT-T15 Glucokinase	Sense primer Antisense primer	5'-CATCACTGTGGGCGTGGAT-3' 5'-TGATTTCGCAGTTGGGTGTC-3'
HIT-T15 HNF- 4α	Sense primer Antisense primer	5'-CTGGCAGATGATCGAGCA-3' 5'-GTCACTGGCAGACCCTCCAA-3'
HIT-T15 HNF-1α	Sense primer Antisense primer	5'-ACACCTGGTACGTCCGCAAG-3' 5'-CGTGGGTGAATTGCTGAGC-3'
HIT-T15 IPF-1	Sense primer Antisense primer	5'-TGAAATCCACCAAAGCTCACG-3' 5'-CCGAGTGTAGGCTGTACGGG-3'
HIT-T15 HNF-1β	Sense primer Antisense primer	5'-CAAGCTCCTCTCCACCCAAC-3' 5'-GACTGGCTGGTCACCATGG-3'
HIT-T15 NeuroD	Sense primer Antisense primer	5'-TTCGATAGCCATTCGCATCA-3' 5'-CGGGAATGGTGAAACTGACG-3'

Download English Version:

https://daneshyari.com/en/article/2797694

Download Persian Version:

https://daneshyari.com/article/2797694

<u>Daneshyari.com</u>