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Abstract

In this short note, general formulations of the Toupin—Mindlin strain gradient theory in orthogonal curvilinear coor-
dinate systems are derived, and are then specified for the cases of cylindrical coordinates and spherical coordinates. Expres-
sions convenient for practical use are presented for the corresponding equilibrium equations, boundary conditions, and the
physical components for strains and strain gradients in the two coordinate systems. The results obtained in this paper are
general and complete, and can be useful for a wide range of applications, such as asymptotic crack tip field analysis, cylin-
drical and spherical cavity expansion problems, and the interpretation of micro/nano indentation tests and bending/twist-
ing tests on small scales.
© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

In early 1960s, Toupin (1962) and Mindlin (1964) proposed a strain gradient theory in which the strain
energy function is assumed to depend on both the strain and strain gradient. Numerous early extensions of
this theory have since been developed and used for various applications (see, e.g., Toupin, 1964; Mindlin,
1965; Mindlin and Eshel, 1968; Bleustein, 1966; Bleustein, 1967; Eringen, 1968; Eshel and Rosenfeld, 1970,
1975; Germain, 1973). The past two decades witness a revived interest in this theory from the broad commu-
nity of mechanics and material science. Based on this theory, a variety of new models have been developed to
investigate such problems as strain localisation and size effects in materials and challenging issues on the
micro/nano scales. Conventional continuum theories fail to handle these problems due to the lack of intrinsic
length scales that represent the measures of microstructure in their constitutive relations (see, e.g., Fleck and
Hutchinson, 1993, 1997, 2001; Chambon et al., 1996, 1998, 2001, 2004; Georgiadis et al., 2000; Georgiadis and
Grentzelou, 2006; Zhao et al., 2005, 2006, 2007a,b; Zhao and Sheng, 2006, and references cited therein).
Therefore, being one of the most complete linear generalised continuum theories as commented by Georgiadis
et al. (2000), the Toupin—Mindlin strain gradient theory has evidently enjoyed great success so far, and will be
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chosen for the study in this paper. Meanwhile, it is noteworthy that there are many other gradient theories that
have also received much attention from many engineering ficlds. Amongst them, the gradient plasticity theory
pioneered by Aifantis and co-workers (Aifantis, 1984; Zbib and Aifantis, 1988; Vardoulakis and Aifantis,
1991) is one of the most widely used. The Aifantis theory considers the Laplacian of plastic strain or other
internal variables in the consistency conditions and/or flow rule, which marks its key difference with the Tou-
pin—Mindlin theory. In this note, however, we do not attempt to make a comprehensive comparison among
the various gradient theories, for which purpose the readers are referred to more recent papers such as that by
Chambon et al. (2004).

The original Toupin—-Mindlin Strain Gradient Theory (abbreviated hereafter as SGT) and most models
based on it have been formulated in general tensor forms, which, in theory, can be recast to any specific for-
mulations if necessary. In dealing with applications where rectangular cartesian coordinates are appropriate,
one may find it straightforward and trivial to obtain the specific formulations in terms of rectangular coordi-
nates. However, when strain gradient theories are to be used in cases where curvilinear coordinates are suit-
able, the corresponding formulations regarding the equilibrium equations and boundary conditions can not be
obtained automatically, and the course of derivation is always exceedingly complicated yet tedious and pain-
ful. Meanwhile, formulations of strain gradient theories under orthogonal curvilinear coordinates such as
cylindrical or spherical coordinates are particularly useful for a wide range of applications, such as the analysis
of crack-tip field, cylindrical and spherical cavity expansion in solids, and simulation and interpretation of
experiments on the microscale, such as the twisting of thin copper wires and the micro-indentation tests on
various metallic materials (see Fleck et al., 1994; Nix and Gao, 1998). Limited results are available in the lit-
erature in this regard, and are mostly application-specified and thus of restricted use. For example, Bleustein
(1966) have derived formulations of the SGT in spherical coordinates in a study of the stress concentration at
a spherical cavity. His results, however, are confined to the axi-symmetric case. Eshel and Rosenfeld (1970,
1975) have obtained formulations of the SGT for the cylindrical tube and cavity problems, but their discus-
sions are limited to the plane strain case only. The formulations used by Chen et al. (1999) in an investigation
of the asymptotic crack-tip field by strain gradient plasticity theory apply to plane strain case only. In a recent
study of the torsional surface waves in a half space, following the approach of tensor analysis outlined in Mal-
vern (1969), Georgiadis et al. (2000) have obtained formulations of the SGT with micro inertia in terms of
cylindrical coordinates. The results, however, remain limited to the special case where only one component
of displacements (uy therein) exists. While practical problems are often complex such that simplifications
are not always achievable, it is highly desirable to have a set of general formulations of SGT in terms of cur-
vilinear coordinates that are general and complete enough to cover most cases and may therefore lend great
convenience of immediate use for future use. To the authors’ knowledge, however, such formulations are still
absent, and will thus be pursued in this note.

In view of the popularity of the Toupin—Mindlin strain gradient theory as discussed above, general formu-
lations for this theory in orthogonal curvilinear coordinates will be derived, and will then be specified for two
typical systems—cylindrical coordinates and spherical coordinates. It will be demonstrated that results in
many existing studies can be covered as special cases by our formulations. In the subsequent derivation,
the approach and the notation used by Eringen (1967) for the translation of conventional elasticity theories
from rectangular coordinates to orthogonal curvilinear coordinates are closely followed. Wherever necessary,
detailed explanations will be given on uncommonly used symbols and operations. To facilitate easy compre-
hension, the notation used in the paper is summarized as follows:

Uu; Displacement (components)

& Strain tensor

Nijke Strain-gradient tensor

o Cauchy stress tensor

Tjjk Higher-order stress tensor

Aot Lamé constants

& Elastic constants associated with gradient terms
/ Internal material length scale

Ty Surface tractions
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