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Abstract

A perturbation method is used to analyse the nonlinear vibration behaviour of imperfect general structures under static
preloading. The method is based on a perturbation expansion for both the frequency parameter and the dependent vari-
ables. The effects on the linearized and nonlinear vibrations caused by geometric imperfections, a static fundamental state,
and a nontrivial static state are included in the perturbation procedure.

The theory is applied in the nonlinear vibration analysis of anisotropic cylindrical shells. In the analysis the specified
boundary conditions at the shell edges can be satisfied accurately. The characteristics of the analysis capability are shown
through examples of the vibration behaviour of specific shells. Results for single mode and coupled mode nonlinear vibra-
tions of shells are presented. Parametric studies have been performed for a composite shell.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Investigations in the field of the nonlinear vibration behaviour of structures used to rely on analytical tech-
niques, before the advent of powerful numerical approaches such as the commonly used Finite Element
Method (Evensen, 1974). Although the required computational resources are currently available to use the
Finite Element Method in combination with numerical time integration, analytical or semi-analytical (i.e. ana-
lytical–numerical) approaches remain indispensable to obtain insight in the behaviour of the structure. The
starting point for an analytical approach is generally the set of governing differential equations of the specific
structure under consideration. Often the spatial dependence of the solution is taken care of by means of a
Galerkin-type discretization, while a perturbation technique is used to describe the temporal behaviour (Nay-
feh and Mook, 1979).

As a generalisation of such ad hoc analytical approaches for specific structures, Rehfield (1973) introduced
a perturbation method analogous to Koiter’s initial postbuckling theory (Koiter, 1945) to investigate the
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Nomenclature

as, bs, bij nonlinearity coefficients static state
ad, bd, bijk nonlinearity coefficients dynamic state
aijk, bijkl nonlinearity coefficients dynamic state, multi-mode analysis
H homogeneous linear functional
L1 homogeneous linear functional
L2, L11 homogeneous quadratic functional
M generalized mass operator
q generalized applied load
t time
u generalized displacement
�u generalized geometric imperfection
u* geometric imperfection, nontrivial mode
� generalized strain
K normalized static load parameter
Kc linear bifurcation buckling load
r generalized stress
n perturbation parameter
ns, nd, nt perturbation parameter; static, dynamic, imperfect dynamic state
x radial frequency
xc linear natural frequency
xcI linear natural frequency, multi-mode analysis

Shell analysis (Section 6)
Aij, Bij, Dij stiffness matrices
A�ij;B

�
ij;D

�
ij semi-inverted stiffness matrices

�A�ij; �B
�
ij;

�D�ij nondimensional semi-inverted stiffness matrices
c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� m2Þ

p
E reference Young’s modulus
E11, E22 Young’s moduli orthotropic layer
f0 fundamental state stress function component
f1, f2 first-order stress function components
fa, fb, fc second-order stress function components
F Airy stress function
F(0), F(1), F(2) stress functions for 0th-, 1st-, and 2nd-order state
G12 shear modulus orthotropic layer
h reference shell wall thickness
hk thickness of k-th layer
L shell length
LA*, LB*, LD* linear operators
LNL nonlinear operator
Mx, My, Mxy, Myx moment resultants
n number of full waves in circumferential direction
Nx, Ny, Nxy stress resultants
N0 applied axial load (N0 = �Nx(x = L))
Ncl classical buckling load (Ncl = (Eh2)/(cR))
p applied external pressure
�p normalized external pressure ð�p ¼ ðcR2Þ=ðEh2ÞpÞ
R radius of shell
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