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Abstract

The transient motion of an anisotropic elastic bimaterial due to a line force or a line dislocation is studied. The bima-
terial is assumed to be at rest and stress-free for t < 0. The line source is applied at t = 0 and maintained for t > 0. A for-
mulation which is an extension to Stroh’s formalism for anisotropic elastostatics is employed. The general solution is
expressed in terms of the eigenvalues and eigenvectors of a related eigenvalue problem. The method is used to obtain
the analytic solutions without the need of performing integral transforms. Numerical examples of the GaAs bimaterial
due to a line force or dislocation are presented for illustration.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Wave propagation in layered elastic media has been a subject of interest in the field of geophysics, acoustics
and nondestructive testing. Analysis of the elastodynamic problem is complicated due to the fact that as the
propagating wave is interrupted by the interfaces, reflection and transmission waves occur and interfacial
waves may also arise. The degree of complexity of the interactions depends on the mechanical properties of
the individual layer, number and nature of the interfacial conditions and loading conditions, among other fac-
tors. Here we consider the dynamic response of a bimaterial composed of two dissimilar elastic half-spaces of
general anisotropy induced by a line force or a line dislocation. The problem serves as a basis for further stud-
ies of anisotropic layered systems.

Ma and Huang (1996) considered the problem for an isotropic bimaterial loaded by a line force. The prob-
lem is solved by application of Laplace transform method. The inverse transforms are evaluated by means of
Cagniard’s method. Every and Briggs (1998) presented algorithms based on Fourier transform for calculating
the time domain displacement response of fluid-loaded anisotropic half-spaces to impulsive line and point
forces at their interface. Wu (2003) have used an extended Stroh’s formalism to derive a closed-form solution
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for a suddenly applied interfacial line force or dislocation in an anisotropic bimaterial. In this formulation the
solution is expressed in terms of the eigenvalues and eigenvectors of a six-dimensional matrix, which is a func-
tion of the material constants, time and position. A major advantage of the formulation is that no integral
transforms are required. The fact greatly facilitates derivations of explicit solutions. Recently, Wu and Chen
(2006) have further generalized the formulation to treat the problem of a dynamic buried source in a semi-
infinite medium. In this paper the generalized formalism proposed by Wu and Chen is used.

The plan of the paper is as follows. In Section 2 the formulation employed is introduced. The problem of a
buried line source in an anisotropic bimaterial is studied in Section 3. Numerical examples are given in Section
4. Some conclusions are finally given.

2. Formulation

For two-dimensional deformation in which the Cartesian components of the stress rij and the displacement
ui, i, j = 1,2,3, are independent of x3, the equations of motion are

t1;1 þ t2;2 ¼ q€u; ð1Þ
where t1 ¼ ðr11; r21;r31ÞT; t2 ¼ ðr12; r22; r32ÞT; €u is the acceleration, q is the density, a subscript comma de-
notes partial differentiation with respect to coordinates and overhead dot designates derivative with respect
to time t. The stress–strain laws are

t1 ¼ Qu;1 þ Su;2; ð2Þ
t2 ¼ STu;1 þWu;2; ð3Þ

where the matrices Q, S, and W are related to elastic constants Cijks by

Qik ¼ Ci1k1; Sik ¼ Ci1k2; W ik ¼ Ci2k2:

The equations of motion expressed in terms of displacements are obtained by substituting Eqs. (2) and (3) into
Eq. (1) as

Qu;11 þ ðSþ STÞu;12 þWu;22 ¼ q€u: ð4Þ

Let the displacement be assumed as

uðx1; x2; tÞ ¼ uðwÞ ð5Þ
with the variable w(x1,x2, t) implicitly defined by

wt � x1 � pðwÞx2 � qðwÞ ¼ 0; ð6Þ
where p(w) and q(w) are functions of w.

With Eqs. (5) and (6), Eq. (4) becomes (Wu and Chen, 2006)
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where I is the identity matrix and
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t � p0ðwÞx2 � q0ðwÞ : ð8Þ

Let u 0(w) be expressed as

u0ðwÞ ¼ f ðwÞaðwÞ; ð9Þ
where f(w) is an arbitrary scalar function of w. It follows that u(w) is a solution of Eq. (4) if

Dðp;wÞaðwÞ ¼ 0; ð10Þ
where D(p,w) is given by

Dðp;wÞ ¼ Qþ pðSþ STÞ þ p2W� qw2I: ð11Þ
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