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a b s t r a c t

Green’s functions for transversely isotropic thermoelastic biomaterials are established in
the paper. We first express the compact general solutions of transversely isotropic thermo-
elastic material in terms of harmonic functions and introduce six new harmonic functions.
The three-dimensional Green’s function having a concentrated heat source in steady state
is completely solved using these new harmonic functions. The analytical results show some
new phenomena of temperature and stress distributions at the interface. The temperature
contours are normal to the interface for the isotropic material but not for the orthotropic
one. The normal stress contours are parallel to the interface at the boundary in the isotro-
pic region only and shear failure is most likely at the heat source due to the highly degen-
erated direction of shear stress contours.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Green’s functions play an important role in both applied and theoretical studies on the physics of solids. They are basic
building blocks of a lot of further works. Green’s functions can be used to construct many analytical solutions of practical
engineering problems by superposition and are very important in the boundary element method as well as the study of
cracks, defects and inclusions.

For isotropic materials, the Kelvin Green’s function is well-known (Banerjee and Butterfield, 1981). For transversely iso-
tropic materials, Lifshitz and Rozentsveig (1947) and Lejcek (1969) derived Green’s functions using the Fourier transform
method. Elliott (1948), Kroner (1953) and Willis (1965) obtained them using the direct method and Sveklo (1969) found
them using the complex method. Pan and Chou (1976) solved Green’s function in the form of compact elementary functions.
For anisotropic materials, Pan and Yuan (2000) and Pan (2003) obtained the three-dimensional Green’s functions for bioma-
terials with perfect and imperfect interfaces, respectively. The thermal effects are not considered in the above works.

Sharma (1958) studied Green’s functions of transversely isotropic thermoelastic materials in integral form. Yu et al.
(1992) found the solution for a point heat source in isotropic thermoelastic bimaterials. Berger and Tewary (2001) and Kattis
et al. (2004) obtained the two-dimensional Green’s functions for anisotropic thermoelastic materials. Chen et al. (2004) de-
rived a compact three-dimensional general solution for transversely isotropic thermoelastic materials. Based on this general
solution, Hou et al. (2008) constructed Green’s function for infinite and semi-infinite transversely isotropic thermoelastic
materials.

As a further extension, the three-dimensional Green’s function for a concentrated heat source in a transversely isotropic
thermoelastic bimaterial is investigated in this paper. Only steady state is considered. For completeness, the general solution

0020-7683/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijsolstr.2008.07.022

* Corresponding author. Tel./fax: +86 731 8822330.
E-mail address: xiongsm@zju.edu.cn (P.-F. Hou).

International Journal of Solids and Structures 45 (2008) 6100–6113

Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/locate / i jsols t r

mailto:xiongsm@zju.edu.cn
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr


of Chen et al. (2004) is summarized in Section 2. In Section 3, six newly found harmonic functions are constructed in terms of
elementary functions with undetermined constants. The unique thermoelastic field can be obtained by substituting these
functions into the general solutions after determining the constants by the compatibility and equilibrium conditions at inter-
face. Numerical examples are presented in Section 4. The contours of temperature increment and stress components are
shown graphically. Finally, the paper is concluded in Section 5.

2. General solutions

We summarize the general solutions of Chen et al. (2004) for use in Section 3. Hou et al. (2008) considered a semi-infinite
transversely isotropic thermoelastic material, which is isotropic in the xy-plane. The result will be extended to two such
semi-infinite materials joining at the interface z = 0 in Section 3.

In the Cartesian coordinate (x, y, z), the constitutive relations are
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where u, v and w are the components of the displacement vector in the x, y and z directions, respectively; rij are the stress
components and h is the temperature increment; cij and kii are the elastic and thermal moduli, respectively. c66 = (c11 � c12)/2
is held for transversely isotropic thermoelastic materials.

In the absence of body forces, the mechanical equilibrium equations are
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The heat equilibrium equation is
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where bii (i = 1, 3) are coefficients of heat conduction and b22 = b11 when the body is isotropy in the xy-plane.
Chen et al. (2004) gave the general solutions to Eq. (1), (2) as follows:
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where the quantities U, r1, r2, sz can be defined in the Cartesian coordinate (x, y, z) and the cylindrical coordinate (r, /, z) in
the complex forms as follows:

U ¼ uþ iv ¼ ei/ður þ iu/Þ;
r1 ¼ rx þ ry ¼ rr þ r/;

r2 ¼ rx � ry þ 2isxy ¼ e2i/ðrr � r/ þ 2isr/Þ;
sz ¼ sxz þ isyz ¼ ei/ðszr þ is/zÞ;

ð4Þ

where i ¼
ffiffiffiffiffiffiffi
�1
p

. In additions, for simplicity, we let zj = sjz (j = 0, 1, 2, 3), where s0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c66=c44

p
, s3 ¼
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p
and s1 and s2 are

the two eigenvalues of the fourth degree equation a0s4 � b0 s2 + c0 = 0 that is Eq. (11) of Chen et al. (2004) in which
a0 ¼ c33c44; b0 ¼ c11c33 þ c2

44 � ðc13 þ c44Þ2; c0 ¼ c11c44. Let wj (j = 0, 1, 2, 3) be the solutions of the following harmonic
equations:
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