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Abstract

In this paper, we analyze the nonlinear dynamic response of an orthotropic laminate in a simply supported boundary
condition subject to thermal and mechanical loading. The equation of motion for the laminate’s deflection is obtained in a
decoupled Duffing equation by means of a Galerkin-type method without Berger’s approximations. The Duffing equation
incorporates an arbitrary thermal field, with both the in-plane and transverse temperature variations in a steady-state and a
transient state. The formulation indicates that the transverse temperature variation produces an additional pressure load,
while the in-plane temperature variation affects the system frequency. The equation allows for characterization of the lam-
inate behaviors in nonlinear thermal buckling, thermal vibration and thermal mechanical response.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Thermal field with a temperature variation can cause the nonlinear deformation of a thin laminated struc-
ture, similar to a mechanical load does. This is particularly true for a thin laminate used as a micro-electro-
mechanical structure (MEMS), such as a circuit board that is in a dynamic motion subject to a thermal electric
field. The MEMS structure is usually composed of conduction and insulation layers; as such, the electro-ther-
mal coupling effect generates non-uniform temperatures in each lamina plane and through the laminate thick-
ness. The deformation and stresses of each lamina differ from one another due to the differences in their
thermal and mechanical properties.

The nonlinear analysis of a laminate subject to mechanical loading has been based on the governing equa-
tions of motion developed by Whitney and Leissa with nonlinear strain fields (Whitney and Leissa, 1969).
Extensive investigation on the laminate nonlinear vibration and buckling behaviors has been completed (Chia,
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Nomenclature

A stiffness matrix of the laminate
A* inverse matrix of A

A�ij elements of A*

B coupling rigidity matrix of the laminate
C stiffness matrix of the laminate for constitutive equation of stress and strain
C0 constant
Cij coefficient of the stiffness matrix
E(k) kth lamina Young’s Modulus
F(x,y, t) Airy’s stress functioneF ðx;y; tÞ Airy’s stress function with complementary function
~I , I, I1, I2 inertia of the laminate
M applied moment vector
MT thermal moment vector
N(w) function operator for in-plane forces and deflection
N in-plane force vector
NT in-plane thermal force vector
Qmn external pressure load on the laminate
T0(x,y) in-plane temperature variation
T1(x,y) temperature variation through the thickness of the laminate
T 0

mn, T 1
mn Fourier series coefficients for T0(x,y), T1(x,y) and Tc(x,y), respectively

a laminate length in x

b laminate length in y

ljð~x0Þ Lyapunov exponent
m*, p*, r*, s* stiffness coefficients
qT transverse thermal load
q Duffing equation forcing function due to pressure load
u(y,y) in-plane deformation of laminate in x direction
v(x,y) in-plane deformation of laminate in y direction
v(1), v(2) elements of Lyapunov exponent
w(x,y, t) transverse deflection function
€wðx; y; tÞ transverse deflection acceleration function
ŵðx; y; tÞ transverse deflection approximating function
jW(t)j, j €W ðtÞj transverse deflection and acceleration, respectively
jW0j finite deflection
aðkÞx , aðkÞy , aðkÞxy kth lamina coefficient of thermal expansion
am mth mode dimension in x

bn nth mode dimension in y

ei, eij, cij strain components
ei strain invariants
j thermal conductivity
ĉ geometric aspect ratio
cmn aspect ratio
qðkÞi kth lamina material density
g coefficient for thermal force NT

n coefficient for thermal moment MT

x excitation frequency
x0�mn natural frequency
xmn system frequency with thermal effect
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