Contents lists available at ScienceDirect

General and Comparative Endocrinology

journal homepage: www.elsevier.com/locate/ygcen

Differential expressions of melanocortin receptor subtypes in melanophores and xanthophores of barfin flounder

Yuki Kobayashi^a, Keisuke Tsuchiya^a, Takeshi Yamanome^b, Helgi B. Schiöth^c, Akiyoshi Takahashi^{a,*}

^a School of Marin Biosciences, Kitasato University, Ofunato, Iwate 022-0101, Japan
^b Iwate Prefectural Inland Fisheries Technology Center, Hachimantai, Iwate 028-7302, Japan
^c Department of Neuroscience, Uppsala University, Uppsala, Sweden

ARTICLE INFO

Article history: Received 15 January 2010 Revised 16 April 2010 Accepted 20 April 2010 Available online 24 April 2010

Keywords: Desacetyl-α-MSH Flounder Melanocortin receptor α-Melanocyte-stimulating hormone Melanophores Pigment dispersion Xanthophores

ABSTRACT

 α -Melanocyte-stimulating hormone (α -MSH) is a member of the melanocortin (MC) family, and the MC receptor (MCR) is a member of the G protein-coupled receptor (GPCR) superfamily. We previously found that in barfin flounder, a flatfish, α -MSH with an acetyl group at the N-terminus stimulated pigment dispersion in xanthophores; however, this effect was not observed in melanophores. Therefore, the present study was undertaken to find which MCR subtypes are expressed in these pigment cells in order to elucidate how acetylation regulates activities of α -MSH-related peptides. Here, we also report the cloning of Mc1r and Mc5r from barfin flounder. Three types of cells-melanophores, xanthophores, and nonchromatophoric dermal cells-were isolated from the skin samples collected from the dorsal fin. These cells were then tested for the expression of *Mc1r* and *Mc5r* as well as *Mc2r* and *Mc4r* that we had previously cloned. Mc1r and Mc5r transcripts were detected in melanophores, and a sole Mc5r transcript was detected in xanthophores. We had previously found that the efficiency of α -MSH was higher than that of desacetyl- α -MSH for pigment dispersion in xanthophores. Acetylated MSH peptide may have increased binding affinity to MC5R, whereas α -MSH lacks melanin-dispersing activity. Increasing evidences indicate that many GPCRs form heterodimers, and this may affect the affinity of the ligand for the corresponding GPCR. Taken together, the expression of two different Mcr subtypes in melanophores may suggest that a heterodimer consisting of MC1R and MC5R may have a low binding affinity toward α -MSH. The present results clarify the types of MCRs that are expressed in melanophores and xanthophores of barfin flounder; furthermore, the results provide important clues about the functional regulation of α -MSH-related peptides. © 2010 Elsevier Inc. All rights reserved.

1. Introduction

In fish, skin pigmentation is associated with several biological processes, including camouflage, protection from ultraviolet rays, and nuptial coloration (Eberle, 1988; Fujii, 1993). Body colors and patterns displayed by many fish species depend on the presence of several types of pigment cells, including melanophores and xanthophores (Fujii and Oshima, 1986, 1994; Fujii, 1993). α -Melanocyte-stimulating hormone (α -MSH) is a classical peptide hormone that participates in physiological and morphological color changes by controlling fish chromatophores (Eberle, 1988; Fujii and Oshima, 1986, 1994). α -MSH is liberated from a precursor protein called proopiomelanocortin (POMC) by posttranslational processing in the intermediate lobe of the pituitary (Eberle, 2000; Takahashi and Kawauchi, 2006a; Takahashi et al., 2006, 2008). This peptide comprises 13 amino acids with an acetyl group and an amide group at the N- and C-termini, respectively (Eberle, 1988).

E-mail address: akiyoshi@kitasato-u.ac.jp (A. Takahashi).

2000; Takahashi et al., 2006). Acetylation of the N-terminus significantly modifies the biological activity of the peptide, because the presence of an acetyl group enhances melanin-dispersing activity (Eberle, 1988; Kawauchi et al., 1984; Kobayashi et al., 2009; Mountjoy et al., 2003).

Barfin flounder is a promising flatfish for aquaculture along the Pacific coast of northern Japan. We reported that barfin flounder expresses three *Pomc* subtypes in the pituitary gland (Kobayashi et al., 2008b; Takahashi et al., 2005, 2006, 2009). *Pomc-c*, one of the three genes, is also expressed in a variety of tissues, including the skin, and the total amount of *Pomc-c* transcripts in the skin is comparable to the sum of *Pomc-a*, *-b*, and *-c* transcripts in the pituitary (Kobayashi et al., 2008b, 2009; Takahashi et al., 2005). Recently, we identified desacetyl- α -MSH derived from POMC-C in the skin extract and found that *Pomc-c* is expressed in nonchromatophoric dermal cells (Kobayashi et al., 2009; Takahashi et al., 2009). These results indicate that desacetyl- α -MSH produced in the skin plays a paracrine role in pigmentation. Moreover, acetylation of the N-terminus of α -MSH-related peptides resulted in opposite functions in melanophores and xanthophores in the skin

^{*} Corresponding author. Fax: +81 192 44 3934.

^{0016-6480/\$ -} see front matter \circledcirc 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.ygcen.2010.04.017

of barfin flounder—presence of the acetyl group inhibited the pigment-dispersing activity in melanophores but enhanced this activity in xanthophores (Kobayashi et al., 2009; Takahashi et al., 2009). These different responses may suggest the presence of distinct α -MSH receptors in the two chromatophoric cell types.

Melanocortin receptor (MCR; MC is a collective term for MSHrelated peptides) is a G protein-coupled receptor (GPCR) with seven transmembrane domains and short extracellular and intracellular domains at the N- and C-termini, respectively (Metz et al., 2006; Schiöth et al., 2005; Takahashi and Kawauchi, 2006a,b). Molecular cloning studies have revealed the presence of at least five subtypes of MCR (MC1R to MC5R) in fish, as in the case of tetrapods (Aluru and Vihayan, 2008; Cerdá-Reverter et al., 2003a,b; Haitina et al., 2004, 2007; Klovins et al., 2004a,b; Kobayashi et al., 2008a; Logan et al., 2003; Metz et al., 2005; Ringholm et al., 2002, 2003; Sánchez et al., 2009a,b, 2010; Selz et al., 2007; van der Salm et al., 2005). Among the five types of *Mcr*, *Mc1r*, and *Mc5r* are profoundly expressed in the skin of tilapia and goldfish, respectively (Cerdá-Reverter et al., 2003a; van der Salm et al., 2005). Currently, only *Mc4r* has been reported to be present in barfin flounder (Kobayashi et al., 2008a). Signals indicating the presence of this receptor transcripts were detected in the skin, but their intensities were weaker than those in the brain, liver, testis, and ovary. The present study was performed to investigate the type of *Mcr* expressed in isolated

1 1		60 20
61 21	GACTACATGGACGAGAACTACACGAACTCCACCGGCGGTGAGCGACACTCTCTGGGCTGC D Y M D E N Y T N S T G G E R H S L G C	120 40
121 41	$\begin{array}{cccc} {\tt GTGCAGGTCCGCATCCCGCAGGAGCTCTTCCTGGCGCTGGGGGCTCATCAGCCTGGTGGAG \\ {\tt V} & {\tt Q} & {\tt V} & {\tt R} & {\tt I} & {\tt P} & {\tt Q} & {\tt E} & {\tt L} & {\tt A} & {\tt L} & {\tt G} & {\tt L} & {\tt I} & {\tt S} & {\tt L} & {\tt V} & {\tt E} \\ {\tt V} & {\tt Q} & {\tt V} & {\tt R} & {\tt I} & {\tt P} & {\tt Q} & {\tt E} & {\tt L} & {\tt A} & {\tt L} & {\tt G} & {\tt L} & {\tt I} & {\tt S} & {\tt L} & {\tt V} & {\tt E} \\ {\tt TM1} \end{array}$	180 60
181 61	$ \begin{array}{ccc} {} & {} & {} & {} & {} \\ \text{AACATCCTGGTGATTCTGGCCATCATCAAGAACCGC} \\ \underline{\text{AACATCCTGGTGATTCTGGCCATCATCAAGAACCGC} \\ \underline{\text{AACATCCTGGCACTCGCCATCGTGACCGC} \\ \underline{\text{AACATCCTGGCGCCATCGTGGCC} \\ \underline{\text{AACATCCTGGCGCCATCGTGGCC} \\ \underline{\text{AACATCCTGGCGCCATCGTGGCC} \\ \underline{\text{AACATCCTGGCGCCATCGTGGCC} \\ \underline{\text{AACATCCTGGCGCCATCGTGGCC} \\ \underline{\text{AACCATCCTGGCCCTGCGCCCCGC} \\ \underline{\text{AACCATCCTGGCCCTGGCCCCTGGCCCCATGTACTC} \\ \underline{\text{AACATCCTGGCCCATCGTGGCC} \\ \underline{\text{AACATCCTGGCCCATCGTGGCC} \\ \underline{\text{AACATCCTGGCCCATCGTGGCC} \\ \underline{\text{AACATCCTGCGCCCCGC} \\ \underline{\text{AACATCCTGCCCCCTGGCCCCATGTC} \\ \underline{\text{AACATCCTGCCCCGCCCCGCCCCCCGCCCCCCGC} \\ \text{AACATCCTGCCCCCGCCCCCCCCCCCCCCCCCCCCCCCC$	240 80
241 81	$\begin{array}{c} GSP-MC1-rv1\\ \texttt{TTCATCTGCTGCCTGCCGTGTCCGACATGCTCGTCAGCGTCAGCGTCGCGACACGIGGIGGAGACC}\\ \hline F I C C L A V S D M L V S V S N V V E T\\ \hline \\ TM2 \end{array}$	300 100
301 101	$ \begin{array}{c} GSP-MC1-fw2\\ \underline{IICIICA}TGCTTCTCCACGACCACGGCCTGCTGGACGTGCACCCAGGIAIGCIGCGCCAC\\ \underline{F} & \underline{F} & \underline{M} & \underline{L} & \underline{L} & \underline{H} & \underline{D} & \underline{H} & \underline{G} & \underline{L} & \underline{D} & \underline{V} & \underline{H} & \underline{G} & \underline{M} & \underline{R} & \underline{H} \end{array} $	360 120
361 121	$ \begin{array}{c} \underline{CTGGACAACGT}CATCGACGTGATGATGAT C TGCAGCTCCGTGGTGTCCTCGCTCTCCTCGCTCTCCTCGCTCTCCTC$	420 140
421 141	$\begin{array}{cccc} {} TGCACCATCGCCGCGGACCGCTACATCACCATCTTTACGCGCTGCGCTACCACAGCATC \\ \underline{C \ T \ I \ A \ A \ D \ R \ Y \ I \ T \ I \ F \ Y \ A \ L \ R \ Y \ H \ S \ I \\ \\ \underline{H \ H \ H \ H \ H \ H \ H \end{array}$	480 160
481 161	ATGACCACGCAGCGCGCCATCATCATCGTGGTGGTATGGCTGGC	540 180
541 181	$\begin{array}{c cccc} AGCATCCTCTTCATCGTGTACCACACCGACAACGCGGTCATCGTGTGCCTCGTGACCTTC\\ \underline{S \ I \ L \ F \ I \ V \ Y \ H} \ T \ D \ N \ \underline{A \ V \ I \ V \ C \ L \ V \ T \ F} \\ \hline TM5 \end{array}$	600 200
601 201	TTCTGCACCACGCTGGTGTTCAACGCCGTGTTGTATCTGCACATGTTCCTCCTGGCACAC <u>FCTTLVFNAVLYLH</u> MFLLAH	660 220
661 221	GTGCACTCGCGGCGCATCGTGTCTTTCCATAAAAGCAGTGGCCAGACCACGAGCATGAAG V H <u>$S \ R \ R$</u> I V S F H K S S G Q T T <u>$S \ M \ K$</u>	720 240
721 241	GGAGCGATCACCCTCACCTGCTGGGGGCCTTCATTTTATGCTGG <u>GGCCCATTCTTC</u> G A I T L <u>T I L L G V F I L C W G P F F</u> TM6	780 260
781 261	GSP-MC1-fw1 <u>CICCACCICAT</u> CCTCATCCTCATCTGCCCCACCAGCCCCTTCTGCAACTGTTTCTTCCAA <u>L H L I L I L C P T S P F C N C F F Q</u>	840 280
841 281	$ \begin{array}{c} {}^{Trv1}\\ \textbf{AACTTTAACCTTTTCCTGATCCTCATCATCT}\\ \underline{\textbf{N} \ F \ \textbf{N} \ \textbf{L} \ \textbf{F} \ \textbf{L} \ \textbf{F} \ \textbf{L} \ \textbf{L}$	900 300
901 301	$ \begin{array}{cccc} GCGTACCGGAGTCAGGAGCTGCGCGCAAAACCCCTCCAGGAGCTGCTCTTGTGTT\underline{CTTGGTGC\\ A & Y & R & Q & E & L & R & K & T & L & Q & E & L & L & C & W & C \end{array} $	960 320
961 321	GSP-MC1-rv2 II <u>CGGCGICIGA</u> F G V *	972 323

Fig. 1. The nucleic acid sequence of the reading frame and the deduced amino acid sequence of barfin flounder MC1R (Accession No. AB287974). DNA was amplified from the genomic DNA or the brain cDNA. Positions of nucleic acid and amino acid sequences are indicated on both the sides. Broken lines indicate primer sites mentioned in Section 2.2. Italicized bases indicate restriction sites. Underlined regions of amino acid (aa) sequence are the transmembrane domains (TM). Italicized aa along with underlines indicate potential *N*-glycosylation motifs. Italicized aa along with double-underlines indicate potential protein kinase C phosphorylation motifs. Shadows indicate potential casein kinase 2 phosphorylation motifs. *Stop codon. ###DRY motif.

Download English Version:

https://daneshyari.com/en/article/2800982

Download Persian Version:

https://daneshyari.com/article/2800982

Daneshyari.com