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Abstract

In this paper, we will consider a half-space filled with an elastic material, which has constant elastic parameters. The
governing equations are taken in the context of the two-temperature generalized thermoelasticity theory [Youssef, H.,
2005a. The dependence of the modulus of elasticity and the thermal conductivity on the reference temperature in general-
ized thermoelasticity for an infinite material with a spherical cavity, J. Appl. Math. Mech., 26(4), 4827; Youssef, H., 2005b.
Theory of two-temperature generalized thermoelasticity, IMA J. Appl. Math., 1–8]. The medium is assumed initially qui-
escent. Laplace transform and state space techniques are used to obtain the general solution for any set of boundary con-
ditions. The general solution obtained is applied to a specific problem of a half-space subjected to thermal shock and
traction free. The inverse Laplace transforms are computed numerically using a method based on Fourier expansion tech-
niques. Some comparisons have been shown in figures to estimate the effect of the two-temperature parameter.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Because of the advancement of pulsed lasers, fast burst nuclear reactors and particle accelerators, etc.,
which can supply heat pulses with a very fast time-rise Bargmann (1974), Anisimov et al. (1974), Boley
(1980), Qiu and Tien (1993), Tzou (1997), Chen et al. (2004), Naotak et al. (2003); generalized thermoelasticity
theory is receiving serious attention of different researchers. The development of the second sound effect has
been reviewed by Chandrasekhariah (1986). Now, mainly two different models of generalized thermoelasticity
are being extensively used-one proposed by Lord and Shulman (1967) and the other proposed by Green and
Lindsay (1972). The L–S theory suggests one relaxation time and according to this theory, only Fourier’s heat
conduction equation is modified; while G–L theory suggests two relaxation times and both the energy equa-
tion and the equation of motion are modified. A method for solving coupled thermoelastic problems by using
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the state-space approach was developed by Bahar and Hetnarski (1977a,b, 1978). Erbay and Suhubi (1986)
studied longitudinal wave propagation in an infinite circular cylinder, which is assumed to be made of the gen-
eralized thermoelastic material, and thereby obtained the dispersion relation when the surface temperature of
the cylinder was kept constant. Generalized thermoelasticity problems for an infinite body with a circular
cylindrical hole and for an infinite solid cylinder were solved respectively by Furukawa et al. (1990). A prob-
lem of generalized thermoelasticity was solved by Sherief (1993) by adopting the state-space approach.
Chandrasekaraiah and Murthy (1993) studied thermoelastic interactions in an isotropic homogeneous
unbounded linear thermoelastic body with a spherical cavity, in which the field equations were taken in unified
forms covering the coupled, L–S and G–L models of thermoelasticity. The effects of mechanical and thermal
relaxations in a heated viscoelastic medium containing a cylindrical hole were studied by Misra et al. (1987).
Investigations concerning interactions between magnetic and thermal fields in deformable bodies were carried
out by Maugin (1988) as well as by Eringen and Maugin (1989). Subsequently Abd-Alla and Maugin (1990)
conducted a generalized theoretical study by considering the mechanical, thermal and magnetic field in centro-
symmetric magnetizable elastic solids.

Within the theoretical contributions to the subject are the proofs of uniqueness theorems under different
conditions by Ignaczak (1979, 1982) and by Sherief (1987). The state space formulation for problems not con-
taining heat sources was done by Anwar and Sherief (1988a) and the boundary element formulation was done
by Anwar and Sherief (1988b). Some concrete problems have also been solved. The fundamental solutions for
the spherically symmetric spaces were obtained by Sherief (1986). Sherief and Anwar (1986, 1994) have solved
some two dimensional problems, while Sherief and Hamza (1994) have solved some two dimensional problems
and studied the wave propagation in this theory. El-Maghraby and Youssef (2004) used the state space
approach to solve a thermomechanical shock problem. Sherief and Youssef (2004) get the short time solution
for a problem in magnetothermoelasticity. Youssef (2005) constructed a model of the dependence of the mod-
ulus of elasticity and the thermal conductivity on the reference temperature and solved a problem of an infinite
material with a spherical cavity.

Chen and Gurtin (1968), Chen et al. (1968, 1969) have formulated a theory of heat conduction in deform-
able bodies, which depends upon two distinct temperatures, the conductive temperature / and the thermo-
dynamic temperature T. For time independent situations, the difference between these two temperatures is

Nomenclature

k, l Lame’s constants
q density
CE specific heat at constant strain
t time
T temperature
T0 reference temperature
aT coefficient of linear thermal expansion
c =aT(3k + 2l)
rij components of stress tensor
eij components of strain tensor
ui components of displacement vector
K thermal conductivity
s0 relaxation times
c0 ¼

ffiffiffiffiffiffiffiffi
kþ2l

q

q
longitudinal wave speed

g ¼ qCE

K the thermal viscosity
e ¼ c

qcE
dimensionless thermoelastic coupling constant

a a > 0 two-temperature parameter
b ¼ ac2

0g
2 dimensionless two-temperature parameter

a ¼ cT 0

kþ2l dimensionless mechanical coupling constant
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