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Abstract

The three matrices L(v), S(v) and H(v), appearing frequently in the investigations of the two-dimensional steady state
motions of elastic solids, are expressed explicitly in terms of the elastic stiffness for general anisotropic materials. The spe-
cial cases of monoclinic materials with a plane of symmetry at x3 = 0, x1 = 0, and x2 = 0 are all deduced. Results for ortho-
tropic materials appearing in the literature may be recovered from the present explicit expressions.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

It is known that Stroh formalism is mathematically elegant and technically powerful in determining the
two-dimensional deformations not only in anisotropic elastostatics (Stroh, 1958; Ting, 1996) but also in aniso-

tropic elastodynamics (Ting, 1996). In elastostatics, the three real matrices L, S and H, called Barnett–Lothe

tensors appear often in the solutions of many anisotropic boundary value problems. Due to their importance,
the explicit expressions of Barnett–Lothe tensors have been investigated by many researchers. The most gen-
eral anisotropic materials without any symmetry plane assumed were considered by Wei and Ting (1994) and
Ting (1997). Other related works for anisotropic elastic materials with special symmetry plane assumed are
Dongye and Ting (1989) for orthotropic materials, Ting (1992) and Suo (1990) for monoclinic materials with
the symmetry plane at x3 = 0, Tanuma (1996), and Nakamura and Tanuma (1996) for transversely isotropic
materials.

In elastodynamic problems, if the elastic body is in a steady state motion in a certain direction with a con-
stant speed v > 0, then the solutions of these problems are often related to three matrices L(v), S(v) and H(v).
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Explicit expressions of these three matrices are also useful in the derivation of the secular equation when sur-
face wave speed in an anisotropic elastic half-space is concerned (Ting, 2002). These matrices reduce, respec-
tively, to Barnett–Lothe tensors L, S and H when v = 0. For orthotropic materials, Dongye and Ting (1989)
presented the explicit expressions of L(v), S(v) and H(v). Chadwick and Wilson (1992a,b) formulate these ten-
sors in terms of integrals for monoclinic materials with the symmetry plane at x3 = 0. Explicit expressions are
then deduced for the special case of orthotropic and cubic materials.

In this paper, we obtain the explicit expressions of the matrices L(v), S(v) and H(v) for general anisotropic
materials. The approach developed in our recent work for elastostatic problems (Liou and Sung, submitted for
publication) is extended to the present derivations for the matrices L(v), S(v) and H(v). In previous work (Liou
and Sung, submitted for publication), the Barnett–Lothe tensors L, S and H were expressed in terms of elastic
stiffness for general anisotropic materials. Similarly, all elements of matrices L(v), S(v) and H(v) are also
expressed in terms of elastic stiffness and results for elastosatics (Liou and Sung, submitted for publication)
may be recovered when v = 0. Explicit expressions of the matrices L(v), S(v) and H(v) derived for general
anisotropic materials are then specialized to the cases of monoclinic materials with the plane of symmetry
at x3 = 0, x1 = 0, and x2 = 0. In particular, the results for the monoclinic materials with symmetry plane at
x3 = 0 remain valid for the degenerate cases when repeated eigenvalues occur. Moreover, our results of
L(v), S(v) and H(v) for orthotropic materials may recover to those previously presented by Dongye and Ting
(1989).

Below is the plan of our work. In Section 2, the Stroh formalism for the steady state motions of aniso-
tropic elastic solids is outlined. In Section 3 the approach used by Liou and Sung (submitted for publi-
cation) was extended to the constructions of the eigenvectors for the steady state problems for anisotropic
materials. With eigenvectors constructed in Section 3, the explicit expressions of the matrices L(v), S(v)
and H(v) are then derived in Section 4. In Sections 5–7, results for materials with symmetry plane at
x3 = 0, x1 = 0, and x2 = 0 are deduced. In Section 8, our results were validated by the special case of
orthotropic materials which were obtained by Dongye and Ting (1989) and finally in Section 9 we con-
clude our work.

2. The Stroh formalism

Consider a linear elastic body in a steady state motion in the x1-direction with a constant speed v > 0. The
governing equation for the displacement u = [u1,u2,u3]T for the two-dimensional deformations for which ui

(i = 1,2,3) are independent of x3 is

ðQ � qv2IÞ o
2u

ox1 ox1

þ ðRþ RTÞ o
2u
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o
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ox2 ox2

¼ 0; ð2:1Þ

where q is the mass density, I is a 3 · 3 unit real matrix, the superscript T stands for the transpose and
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Here the contracted notations of the elastic stiffness cijks are used to express all the elements of Q, R and T as
shown above. Note that both Q and T are symmetric and positive definite. In what follows, only the subsonic
problems are considered (Ting, 1996). Therefore, the general solution to Eq. (2.1) can be expressed as follows:

u ¼ 2RefAf ðzÞg; ð2:3Þ

where

A ¼ ½a1; a2; a3�; ð2:4Þ

f ðzÞ ¼ ½f1ðz1Þ; f2ðz2Þ; f3ðz3Þ�T; ð2:5Þ

and zk = x1 � vt + pkx2. Unknown complex number pk and constant vector ak are determined by the
eigenrelation
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