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Abstract

This paper is concerned with a linear theory of thermodynamics for elastic materials with microstructure, whose mic-
roelements possess microtemperatures. It is shown that there exists the coupling of microrotation vector field with the
microtemperatures even for isotropic bodies. Uniqueness and continuous dependence results are presented. The theory
is used to establish the solution corresponding to a concentrated heat source acting in an unbounded continuum.
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1. Introduction

The origin of the modern theories of a continuum with microstructure goes back to papers by Ericksen and
Truesdell (1958), Mindlin (1964), Eringen and Suhubi (1964) and Green and Rivlin (1964). Green (1965) has
established the connection of the theory of multipolar continuum mechanics and the other theories. Much
of the theoretical progress in the field is discussed in the books of Kunin (1983), Ciarletta and Ies�an (1993)
and Eringen (1999). In the theory of micromorphic bodies formulated by Eringen and Suhubi (1964, 1999)
the material particle is endowed with three deformable directors and the theory introduces nine extra degrees
of freedom over the classical theory. On the basis of the theory of bodies with inner structure, Grot (1969) has
established a theory of thermodynamics of elastic bodies with microstructure whose microelements possess
microtemperatures. The Clausius–Duhem inequality is modified to include microtemperatures, and the first-
order moment of the energy equations are added to the usual balance laws of a continuum with microstructure.
The theory of micromorphic fluids with microtemperatures has been studied in various papers (see, e.g., Koh,
1973; Riha, 1975, 1977; Verma et al., 1979). Riha (1976) has presented a study of heat conduction in materials
with microtemperatures. Experimental data for the silicone rubber containing spherical aluminium particles
and for human blood were found to conform closely to predicted theoretical thermal conductivity.
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A theory of thermoelasticity with microtemperatures, in which the microelements can stretch and contract
independently of their translations has been studied by Ies�an (2001). This is the simplest thermomechanical
theory of elastic bodies that takes into account the microtemperatures and the inner structure of the materials.
The theory introduces one mechanical extra degree of freedom over the classical theory. The theory of ther-
moelasticity with microtemperatures has been investigated by various authors. Casas and Quintanilla (2005)
have studied the problem of stability. The theory of steady vibrations has been investigated by Scalia and Sva-
nadze (2006) and Svanadze (2003, 2004).

Eringen (1999) has defined a class of micromorphic solids called microstretch solids. The material particles
of these materials have seven degrees of freedom: three displacements, three microrotations and one micro-
stretch. The microstretch continuum can model various porous media filled with gas or inviscid fluids, com-
posite materials reinforced with chopped elastic fibers, mixtures with breathing elements and biological fluids.

In the present paper we use the results established by Grot (1969) to derive a linear theory of microstretch
elastic solids with microtemperatures. This theory introduces three extra degrees of freedom over the theory
presented by Ies�an (2001). A material particle is then equipped with the degrees of freedom for rigid rotations,
in addition to the classical translation degrees of freedom and the microstretch. An interesting aspect in this
theory is the coupling of microrotation vector with the microtemperatures even for isotropic bodies. We note
that in the classical theory of Cosserat thermoelasticity for isotropic bodies, the microrotation vector is inde-
pendent of the thermal field. In Section 2, we establish the field equations of the linear theory of thermoelas-
ticity with microtemperatures. A uniqueness theorem in the dynamical theory of anisotropic bodies is
presented in Section 3. In Section 4, we study the continuous dependence of solutions upon initial data and
body loads. Section 5 is concerned with the effects of a concentrated heat source in a body that occupies
the entire three-dimensional euclidean space.

2. Field equations

In the first part of this section we present the general balance laws of a continuum with microstructure in
the form given by Grot (1969) and Eringen (1999). Then we derive the field equations of the linear theory of
microstretch thermoelastic bodies with microtemperatures. The second moment of stress tensor and the micro-
stress moment average are neglected in the balance laws since these functions appear only nonlinearly in the
field equations (cf. Grot, 1969).

We consider a body that at some instant occupies the region B of the euclidean three-dimensional space and
is bounded by the piecewise smooth surface oB. The motion of the body is referred to a fixed system of rect-
angular cartesian axes Oxi (i = 1,2,3). We denote by n the outward unit normal of oB. Boldface characters
stand for tensors of an order p P 1, and if v has the order p, we write vij. . .s (p subscripts) for the components
of v in the cartesian coordinate frame. We shall employ the usual summation and differentiation conventions:
Latin subscripts are understood to range over the integers (1, 2,3), summation over repeated subscripts is
implied and subscripts preceded by a comma denote partial differentiation with respect to the corresponding
cartesian coordinate. In what follows we use a superposed dot to denote partial differentiation with respect to
the time t.

Let u be a displacement vector field over B. The balance of linear momentum can be written in the form

tji;j þ qfi ¼ q€ui; ð2:1Þ

where tij is the stress tensor, q is the reference mass density, and fi is the body force. We denote by mijk the first
stress moment tensor. The balance of first stress moments is given by

mkij;k þ tji � sji þ q‘ij ¼ q _rij; ð2:2Þ

where sij is the microstress tensor, ‘ij is the first body moment density and rij is the inertia per unit mass. Let e

be the internal energy density per unit mass, and let ei denote the first moment of energy vector. The balance of
energy and the balance of first moment of energy can be expressed as

q _e ¼ tijvj;i þ ðsij � tijÞmji þ mkijmij;k þ qj;j þ qS ð2:3Þ

and
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