

Available online at www.sciencedirect.com

SOLIDS and STRUCTURES

International Journal of Solids and Structures 43 (2006) 4917-4936

www.elsevier.com/locate/ijsolstr

An elastic–plastic crack bridging model for brittle-matrix fibrous composite beams under cyclic loading

Andrea Carpinteri, Andrea Spagnoli *, Sabrina Vantadori

Department of Civil and Environmental Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, 43100 Parma, Italy

> Received 8 April 2005; received in revised form 20 June 2005 Available online 24 August 2005

Abstract

A fibrous composite beam with an edge crack is submitted to a cyclic bending moment and the crack bridging actions due to the fibers. Assuming a general elastic-linearly hardening crack bridging model for the fibers and a linear-elastic law for the matrix, the statically indeterminate bridging actions are obtained from compatibility conditions. The elastic and plastic shake-down phenomena are examined in terms of generalised cross-sectional quantities and, by employing a fatigue crack growth law, the mechanical behaviour up to failure is captured. Within the framework of the proposed fracture mechanics-based model, the cyclic crack bridging due to debonding at fiber–matrix interface of short fibers is analysed in depth. By means of some simplifying assumptions, such a phenomenon can be described by a linear isotropic tensile softening/compressive hardening law. Finally, numerical examples are presented for fibrous composite beams with randomly distributed short fibers.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: Bridged crack; Brittle-matrix fibrous composite beam; Elastic-plastic model; Fatigue crack growth; Linear hardening/ softening; Cyclic loading

1. Introduction

As is well-known, by incorporating ductile fibers into the brittle matrix of a composite material, several mechanical properties can be improved (cracking resistance, ductility, impact resistance, fatigue strength). Fiber-reinforced cementitious composites are employed in an increasing amount of civil engineering structures. These materials under cyclic loading tend to develop cracks in the matrix, and such cracks are

^{*} Corresponding author. Tel.: +39 0521 905927; fax: +39 0521 905924. *E-mail address:* spagnoli@unipr.it (A. Spagnoli).

^{0020-7683/\$ -} see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.ijsolstr.2005.06.059

Nomenclature	
a	crack denth
h h	height of the beam cross-section
С;	position of the <i>i</i> th reinforcement with respect to the bottom of the beam cross-section
$D_{\rm f}$	fiber diameter
e_i	elastic part of crack opening translation at the <i>i</i> th reinforcement level
Ė	Young modulus of the matrix
E_{f}	Young modulus of the fibers
F_i	crack bridging force of the <i>i</i> th reinforcement
$F_{\mathrm{P},i}$	initial yield force of the <i>i</i> th reinforcement
$\overline{F}_{\mathrm{P},i}$	current yield force of the <i>i</i> th reinforcement
h_i	hardening modulus of the crack bridging law for the <i>i</i> th reinforcement
$K_{0,i}$	elastic stiffness of the crack bridging law for the <i>i</i> th reinforcement
$K_{t,i}$	plastic stiffness of the crack bridging law for the <i>i</i> th reinforcement
$K_{\rm I}$	stress intensity factor
$K_{\rm IC}$	critical stress intensity factor (fracture toughness)
l	embedded length of a single fiber
$L_{\rm f}$	fiber length
M	bending moment
$M_{\rm F}$	bending moment of either unstable fracture or crushing of the matrix
$M_{\rm P}$	plastic bending moment
$M_{\rm SD}$	snake-down bending moment
n N	number of loading cycles
n IV	plastic part of crack opening translation at the <i>i</i> th reinforcement level
P_i P	pull-out force of a single fiber
$P_{\rm p}$	initial yield pull-out force of a single fiber (peak load)
t P	thickness of the beam cross-section
$V_{\rm f}$	fiber volume fraction
Wi	crack opening translation at the <i>i</i> th reinforcement level
β	load factor
δ	pull-out translation of a single fiber
$\delta_{ m P}$	pull-out translation of a single fiber at the initial yield pull-out force $P_{\rm P}$
$\zeta_i = c_i / l$	b relative position of the <i>i</i> th reinforcement with respect to the bottom of the beam cross-
	section
κ_i	hardening parameter of the crack bridging law for the <i>i</i> th reinforcement
λ_{ij}	localised compliance related to the crack opening translation at the <i>i</i> th reinforcement level due
	to a unit crack opening force $F_j = 1$ acting at ζ_j
λ_{iM}	localised compliance related to the crack opening translation at the <i>i</i> th reinforcement level due
2	to a unit bending moment $M = 1$
λ_{MM}	rotational localised compliance due to a unit bending moment $M = 1$
$\zeta = a/b$	relative crack depth
π_i	plastic part of crack opening translation at the <i>i</i> th reinforcement level, accumulated along the tensile or compressive direction
(Th	initial vield crack bridging force per unit crack surface
υP	initial yield erack officing force per unit crack sufface

Download English Version:

https://daneshyari.com/en/article/280332

Download Persian Version:

https://daneshyari.com/article/280332

Daneshyari.com