

# Microdialysis and proteomics of subcutaneous interstitial fluid reveals increased galectin-1 in type 2 diabetes patients



Emanuel Fryk<sup>a</sup>, Jeanna Perman Sundelin<sup>a</sup>, Lena Strindberg<sup>a</sup>, Maria J. Pereira<sup>b</sup>, Massimo Federici<sup>c</sup>, Nikolaus Marx<sup>d</sup>, Fredrik H. Nyström<sup>e</sup>, Martin Schmelz<sup>f</sup>, Per-Arne Svensson<sup>a</sup>, Jan W. Eriksson<sup>b</sup>, Jan Borén<sup>a</sup>, Per-Anders Jansson<sup>a,\*</sup>

<sup>a</sup> Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

<sup>b</sup> Department of Medical Sciences, Uppsala University, Sweden

<sup>c</sup> Department of Systems Medicine, University of Rome "Tor Vergata", Italy

<sup>d</sup> Division of Cardiology, University Hospital RWTH Aachen, Germany

<sup>e</sup> Department of Medical and Health Sciences, Faculty of Health Sciences, Linkoping University, Linkoping, Sweden

<sup>f</sup> Department of Anesthesiology and Intensive Care Medicine Mannheim, University of Heidelberg, Heidelberg, Germany

#### ARTICLE INFO

Article history: Received 1 February 2016 Accepted 7 April 2016

Keywords: Microdialysis Proteomics Galectin-1 Obesity Adipose tissue

#### ABSTRACT

*Objective.* To identify a potential therapeutic target for type 2 diabetes by comparing the subcutaneous interstitial fluid from type 2 diabetes patients and healthy men.

Methods. Proteomics was performed on the interstitial fluid of subcutaneous adipose tissue obtained by microdialysis from 7 type 2 diabetes patients and 8 healthy participants. 851 proteins were detected, of which 36 (including galectin-1) showed significantly altered expression in type 2 diabetes. We also measured galectin-1 expression in: (1) adipocytes isolated from adipose tissue biopsies from these participants; (2) subcutaneous adipose tissue of 24 obese participants before, during and after 16 weeks on a very low calorie diet (VLCD); and (3) adipocytes isolated from 6 healthy young participants after 4 weeks on a diet and lifestyle intervention to promote weight gain. We also determined the effect of galectin-1 on glucose uptake in human adipose tissue.

Results. Galectin-1 protein levels were elevated in subcutaneous dialysates from type 2 diabetes compared with healthy controls (p < 0.05). In agreement, galectin-1 mRNA expression was increased in adipocytes from the type 2 diabetes patients (p < 0.05). Furthermore, galectin-1 mRNA expression was decreased in adipose tissue after VLCD (p < 0.05) and increased by overfeeding (p < 0.05). Co-incubation of isolated human adipocytes with galectin-1 reduced glucose uptake (p < 0.05) but this was independent of the insulin signal.

Abbreviations: VLCD, Very low calorie diet; PPAR-y, Peroxisome proliferator-activated receptor-y.

<sup>\*</sup> Corresponding author at: The Wallenberg Laboratory, Bruna Stråket 16, Sahlgrenska University Hospital, S-413 45 Gothenburg, Sweden. Tel.: +46 70 203 30 10 (Mobile).

E-mail addresses: emanuel.fryk@vgregion.se (E. Fryk), jeannacperman@gmail.com (J.P. Sundelin), lena.strindberg@medic.gu.se (L. Strindberg), maria.pereira@medsci.uu.se (M.J. Pereira), massimo.federici@comune.sp.it (M. Federici), nmarx@ukaachen.de (N. Marx), fredrik.h.nystrom@gmail.com (F.H. Nyström), Martin.Schmelz@medma.uni-heidelberg.de (M. Schmelz), per-arne.svensson@medic.gu.se (P.-A. Svensson), jan.eriksson@medsci.uu.se (J.W. Eriksson), jan.boren@wlab.gu.se (J. Borén), per-anders.jansson@medic.gu.se (P.-A. Jansson).

Conclusion. Proteomics of the interstitial fluid in subcutaneous adipose tissue in vivo identified a novel adipokine, galectin-1, with a potential role in the pathophysiology of type 2 diabetes.

© 2016 Elsevier Inc. All rights reserved.

### 1. Introduction

The global prevalence of diabetes has more than doubled since 1980 and at least 350 million people worldwide currently suffer from the disease [1], 90% of whom have type 2 diabetes [2]. Adipose tissue dysfunction is a major contributor to the development of insulin resistance, orchestrated through several different proteins including the adiposites leptin, adiponectin and TNF- $\alpha$  [3,4]. Exploiting the adipose tissue to identify novel therapies for type 2 diabetes has been successful, and several drugs that target the peroxisome proliferator-activated receptor- $\gamma$  (PPAR- $\gamma$ ) pathway are now available [5]. However, there is still a need for additional treatment strategies.

Proteomic analysis of biopsied adipose tissue, cultured adipocytes and plasma has identified candidate proteins [6–8], but none have so far been exploited as therapeutic targets of type 2 diabetes. To date, no study has investigated human subcutaneous adipose tissue *in vivo* to find a future therapeutic target for this disease. We have previously shown that microdialysis is an attractive method for acquisition of proteins from the subcutaneous interstitial fluid *in situ* [9]. Indeed, the *in vivo* metabolic milieu is more accurately reflected in samples obtained by microdialysis than in tissue biopsies or blood samples, and the catheterization procedure for microdialysis is minimally invasive [10]. Here we combined microdialysis of human subcutaneous adipose tissue with tandem mass spectrometry, and showed increased levels of galectin-1 in the subcutaneous adipose tissue of type 2 diabetes patients. We chose to investigate this protein further as it was a secreted protein, upregulated in the diabetes group.

## 2. Methods

### 2.1. Participants

Seven men with type 2 diabetes and 8 age-matched healthy men were recruited from primary health care centers and through advertisement in local newspapers. Inclusion criteria for participants with type 2 diabetes: Caucasian males, 40– 65 years, diabetes duration <5 years, weight stable (±3 kg last three months) and heredity for type 2 diabetes. Inclusion criteria for healthy controls: Caucasian males, 40–65 years, HbA1c <6.5% (48 mmol/mol), waist <94 cm and no diabetes heredity. Exclusion criteria for all participants: medications with possible effects on metabolism such as cortisol, natural products or other supplements; nicotine use; ongoing infection; and uncontrolled blood pressure. The healthy controls were drug naive. In the diabetes group, one patient used candesartan, two patients used metformin and one patient

| Table 1 – Clinical Characteristics of Study Participants <sup>a</sup> . |                        |                        |         |
|-------------------------------------------------------------------------|------------------------|------------------------|---------|
| Clinical<br>characteristics                                             | Control                | Type 2 diabetes        | p Value |
| Gender, male                                                            | 8                      | 7                      |         |
| Diabetes duration, years                                                | -                      | 1.6 ± 1.8              |         |
| Age, years                                                              | 54 ± 10                | 55 ± 8                 | 0.83    |
| Body mass index, kg/m <sup>2</sup>                                      | 23.4 ± 1.6             | 25.9 ± 1.8             | 0.02    |
| Waist, cm                                                               | 88 ± 6                 | 97 ± 5                 | 0.01    |
| Waist/hip ratio                                                         | $0.90 \pm 0.06$        | 0.96 ± 0.04            | 0.04    |
| Body fat, %                                                             | 19 ± 6                 | 26 ± 8                 | 0.11    |
| Fat cell diameter, μm                                                   | 89 ± 5                 | 98 ± 4                 | 0.17    |
| HbA1c, % (mmol/mol) <sup>b</sup>                                        | 5.2 ± 0.2 (33.4 ± 2.1) | 6.4 ± 0.7 (46.7 ± 8.2) | <0.01   |
| Fasting P-Glucose, mmol/l                                               | $5.1 \pm 0.4$          | $8.0 \pm 1.4$          | <0.01   |
| Fasting S-Insulin, mU/l                                                 | 3.7 ± 2.0              | 6.6 ± 2.2              | 0.02    |
| HOMA index <sup>c</sup>                                                 | $0.8 \pm 0.5$          | 2.3 ± 0.8              | <0.01   |
| S-HDL, mmol/l                                                           | $1.44 \pm 0.36$        | 1.36 ± 0.29            | 0.68    |
| S-LDL, mmol/l                                                           | 3.5 ± 0.3              | $3.1 \pm 0.2$          | 0.37    |
| S-Triglycerides, mmol/l                                                 | $1.0 \pm 0.7$          | $1.2 \pm 0.6$          | 0.49    |
| Systolic blood pressure, mm Hg                                          | 137 ± 14               | 137 ± 18               | 0.97    |
| Diastolic blood pressure, mm Hg                                         | 85 ± 6                 | 90 ± 11                | 0.25    |

<sup>a</sup> Data presented as mean  $\pm$  SD.

<sup>b</sup> HbA1c normal interval: 5.0–6.4% and 31–46 mmol/mol, respectively.

<sup>c</sup> HOMA = Homeostatic model assessment.

Download English Version:

# https://daneshyari.com/en/article/2805411

Download Persian Version:

https://daneshyari.com/article/2805411

Daneshyari.com