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Widespread Signals of Convergent Adaptation
to High Altitude in Asia and America

Matthieu Foll,1,2,5,* Oscar E. Gaggiotti,3,4 Josephine T. Daub,1,2 Alexandra Vatsiou,4 and
Laurent Excoffier1,2

Living at high altitude is one of the most difficult challenges that humans had to cope with during their evolution. Whereas several

genomic studies have revealed some of the genetic bases of adaptations in Tibetan, Andean, and Ethiopian populations, relatively little

evidence of convergent evolution to altitude in different continents has accumulated. This lack of evidence can be due to truly different

evolutionary responses, but it can also be due to the low power of former studies that have mainly focused on populations from a single

geographical region or performed separate analyses on multiple pairs of populations to avoid problems linked to shared histories

between some populations. We introduce here a hierarchical Bayesian method to detect local adaptation that can deal with complex

demographic histories. Our method can identify selection occurring at different scales, as well as convergent adaptation in different re-

gions. We apply our approach to the analysis of a large SNP data set from low- and high-altitude human populations from America and

Asia. The simultaneous analysis of these two geographic areas allows us to identify several candidate genome regions for altitudinal se-

lection, and we show that convergent evolution among continents has been quite common. In addition to identifying several genes and

biological processes involved in high-altitude adaptation, we identify two specific biological pathways that could have evolved in both

continents to counter toxic effects induced by hypoxia.

Introduction

Distinguishing between neutral and selected molecular

variation has been a long-standing interest of population

geneticists. This interest was fostered by the publication

of Kimura’s seminal paper1 on the neutral theory of molec-

ular evolution. Although the controversy rests mainly on

the relative importance of genetic drift and selection as

explanatory processes for the observed biodiversity pat-

terns, another important question concerns the prevalent

form of natural selection. Kimura1 argued that the main

selective mechanism was negative selection against delete-

rious mutations. However, an alternative point of view

emphasizes the prevalence of positive selection, the mech-

anism that can lead to local adaptation and eventually to

speciation.2,3

A powerful approach to uncover positive selection is

the study of mechanisms underlying convergent evolu-

tion. When different populations or evolutionary lineages

are exposed to similar environments, positive selection

should indeed lead to similar phenotypic features.

Convergent evolution can be achieved through similar ge-

netic changes (sometimes called ‘‘parallel evolution’’) at

different levels: the same mutation appearing indepen-

dently in different populations, the same existing muta-

tion being recruited by selection in different populations,

or the involvement of different mutations in the same

genes or the same biological pathways in separate popula-

tions.4 However, existing statistical genetic methods are

not well adapted to the study of convergent evolution

when data sets consist in multiple contrasts of popula-

tions living in different environments.5 The current strat-

egy is to carry out independent genome scans in each

geographic region and to look for overlaps between loci

or pathways that are identified as outliers in different re-

gions.6 Furthermore, studies are often split into a series

of pairwise analyses that consider sets of populations in-

habiting different environments. Whereas this strategy

has the advantage of not requiring the modeling of com-

plex demographic histories,7,8 it often ignores the correla-

tion in gene frequencies between geographical regions

when correcting for multiple tests.9 As a consequence, cur-

rent approaches are restricted to the comparison of lists of

candidate SNPs or genomic regions obtained from multi-

ple pairwise comparisons. This suboptimal approach

might also result in a global loss of power as compared

to a single global analysis and thus to a possible underes-

timation of the genome-wide prevalence of convergent

adaptation.

One particularly important example where this type of

problem arises is in the study of local adaptation to high

altitude in humans. Human populations living at high alti-

tude need to cope with one of the most stressful environ-

ments in the world, to which they are likely to have devel-

oped specific adaptations. The harsh conditions associated

with high altitude include not only low oxygen partial

pressure, referred to as high-altitude hypoxia, but also

other factors like low temperatures, arid climate, high solar

radiation, and low soil quality.While some of these stresses

can be buffered by behavioral and cultural adjustments,
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important physiological changes have been identified in

populations living at high altitude (see below). Recently,

genomic advances have unveiled the first genetic bases

of these physiological changes in Tibetan, Andean, and

Ethiopian populations.10–19 The study of convergent or

independent adaptation to altitude is of primary inter-

est,11,19,20 but this problem has been superficially ad-

dressed so far, becausemost studies focused on populations

from a single geographical region.10,13,14,16–19

Several candidate genes for adaptation to altitude have

nevertheless been clearly identified,21,22 the most promi-

nent ones being involved in the hypoxia inducible factor

(HIF) pathway, which plays a major role in response to

hypoxia.23 In Andeans, VEGFA (vascular endothelial

growth factor A, MIM 192240), PRKAA1 (protein kinase,

AMP-activated, alpha 1 catalytic subunit, MIM 602739),

and NOS2A (nitric oxide synthase 2A, MIM 163730) are

the best-supported candidates, as well as EGLN1 (egl-9 fam-

ily hypoxia-inducible factor 1, MIM 606425), a downregu-

lator of some HIF targets.12,24 In Tibetans,10,11,13,14,16,25

the HIF pathway gene EPAS1 (endothelial PAS domain

protein 1, MIM 603349) and EGLN1 have been repeatedly

identified.22 Recently, three similar studies that focused on

Ethiopian highlanders17–19 suggested the involvement of

HIF genes other than those identified in Tibetans and

Andeans, with BHLHE41 (MIM 606200), THRB (MIM

190160), RORA (MIM 600825), and ARNT2 (MIM

606036) being the most prominent candidates.

However, there is little overlap in the list of significant

genes in these three regions,18,19 with perhaps the excep-

tion of alcohol dehydrogenase genes identified in two

out of the three analyses. Another exception is EGLN1: a

comparative analysis of Tibetan and Andean popula-

tions12 concluded that ‘‘the Tibetan and Andean patterns

of genetic adaptation are largely distinct from one

another,’’ identifying a single gene (EGLN1) under conver-

gent evolution, but with both populations exhibiting a

distinct dominant haplotype around this gene. This

limited convergence does not contradict available physio-

logical data, as Tibetans exhibit some phenotypic traits

that are not found in Andeans.26 For example, Tibetan

populations show lower hemoglobin concentration and

oxygen saturation than Andean populations at the same

altitude.27 Andeans and Tibetans also differ in their hypox-

ic ventilatory response, birth weight, and pulmonary hy-

pertension.28 Finally, EGLN1 has also been identified as a

candidate gene in Kubachians, a high altitude (~2,000 m

above sea level) Daghestani population from the Cauca-

sus,15 as well as in Indians.29

Nevertheless, it is still possible that the small number of

genes under convergent evolution is due to a lack of power

of genome scan methods done on separate pairs of popula-

tions. In order to overcome these difficulties, we introduce

here a Bayesian genome scan method that (1) extends the

F-model30,31 to the case of a hierarchically subdivided pop-

ulation consisting of several migrant pools, and (2) explic-

itly includes a convergent selection model. We apply this

approach to find genes, genomic regions, and biological

pathways that have responded to convergent selection in

the Himalayas and in the Andes.

Material and methods

Hierarchical Bayesian Model
One of the most widely used statistics for the comparison of allele

frequencies among populations is FST ,
32,33 and most studies cited

in the introduction used it to compare low- and high-altitude pop-

ulations within a given geographical region (Tibet, the Andes, or

Ethiopia). Several methods have been proposed to detect loci un-

der selection from FST , and one of themost powerful approaches is

based on the F-model (reviewed by Gaggiotti and Foll34). However,

this approach assumes a simple island model where populations

exchange individuals through a unique pool of migrants. This

assumption is strongly violated when dealing with replicated pairs

of populations across different regions, which can lead to a high

rate of false positives.35

In order to relax the rather unrealistic assumption of a unique

and common pool of migrants for all sampled populations, we

extended the genome scan method first introduced by Beaumont

and Balding30 and later improved by Foll and Gaggiotti.31 More

precisely, we posit that our data come from G groups (migrant

pools or geographic regions), each group g containing Jg popula-

tions. We then describe the genetic structure by a F-model that as-

sumes that allele frequencies at locus i in population j from group

g, pijg ¼ fpijg1; pijg2;.; pijgKi
g (where Ki is the number of distinct al-

leles at locus i), follow a Dirichlet distribution parameterized with

group-specific allele frequencies pig ¼ fpig1; pig2;.; pigKi
g and with

F
ijg
SC coefficients measuring the extent of genetic differentiation of

population j relative to group g at locus i. Similarly, at a higher

group level, we consider an additional F-model where allele fre-

quencies pig follow a Dirichlet distribution parameterized with

meta-population allele frequencies pi ¼ fpi1; pi2;.; piKi
g and

with Fig
CT coefficients measuring the extent of genetic differentia-

tion of group g relative to the meta-population as a whole at locus

i. Figure S1 (available online) shows the hierarchical structure of

ourmodel in the case of three groups (G ¼ 3) and four populations

per group (J1 ¼ J2 ¼ J3 ¼ 4) and Figure S2 shows the corresponding

nonhierarchical F-model for the same number of populations. All

the parameters of the hierarchical model can be estimated by

further assuming that alleles in each population j are sampled

from a multinomial distribution.36 These assumptions lead to

an expression for the probability of observed allele counts

aijg ¼ faijg1; aijg2;.; aijgKi
g:

Pr
�
aijg jpijg ;pig ;pi; qijg ;fig

�
¼ Pr

�
aijg jpijg

�
Pr
�
pijg jpig ; qijg

�
3Pr

�
pig jpi;fig

�

where Prðaijg

���pijg Þ is the multinomial likelihood, Prðpijg

���pig ; qijgÞ
and Prðpig

��pi;figÞ are Dirichlet prior distributions,

qijg ¼ 1=F
ijg
SC � 1, and fig ¼ 1=Fig

CT � 1. This expression can be

simplified by integrating over pijg so as to obtain:

Pr
�
aijg jpig ;pi; qijg ;fig

�
¼ Pr

�
aijg jpig ; qijg

�
Pr
�
pig jpi;fig

�

where Prðaijg

���pig ; qijgÞ is the multinomial-Dirichlet distribution.34

The likelihood is obtained by multiplying across loci, regions, and

population
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