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a  b  s  t  r  a  c  t

The  biology  and behaviour  of biting  insects  is a vitally  important  aspect  in  the  spread  of  vector-borne  dis-
eases.  This  paper  aims  to  determine,  through  the  use  of  mathematical  models,  what  effect  incorporating
vector  senescence  and  realistic  feeding  patterns  has  on disease.  A novel  model  is  developed  to  enable  the
effects  of age-  and  bite-structure  to be  examined  in  detail.  This  original  PDE  framework  extends  previous
age-structured  models  into  a further  dimension  to  give  a new insight  into  the role  of  vector  biting  and  its
interaction  with  vector  mortality  and spread  of disease.  Through  the  PDE  model,  the roles  of  the  vector
death  and  bite  rates  are  examined  in  a way  which  is  impossible  under  the  traditional  ODE  formulation.
It  is demonstrated  that incorporating  more  realistic  functions  for vector  biting  and  mortality  in  a  model
may  give  rise  to different  dynamics  than  those  seen  under  a  more  simple  ODE  formulation.  The  numerical
results  indicate  that  the  efficacy  of  control  methods  that  increase  vector  mortality  may  not  be  as great  as
predicted  under  a standard  host–vector  model,  whereas  other  controls  including  treatment  of  humans
may  be  more  effective  than  previously  thought.

©  2015  The  Authors.  Published  by Elsevier  B.V. This  is  an open  access  article  under  the  CC BY  license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The role of biting insects is of the utmost importance in the
transmission dynamics of vector-borne diseases; without them
many diseases simply could not spread. Vector biology such as
longevity and biting rate has long been known to determine not
only the persistence of such diseases but also to affect the size and
speed of epidemics and the equilibrium prevalence of endemics.
Indeed, in the early mathematical models of malaria, Ross indi-
cates that vector death rate and bite rate are important with both
featuring in his threshold theorem for malaria (Ross, 1916).

The Ross–Macdonald ordinary differential equation (ODE)
model (Macdonald, 1957; Ross, 1911) and its many variations dom-
inate the literature in vector-borne disease modelling. However,
key assumptions regarding insect behaviour and biology are often
disregarded or overlooked. Taking a basic model of vector-borne
disease, one can use a mechanistic approach driven by observation
of the biology of transmission and introduce more of the inherent
complexity. It is important that this is introduced in such a way that
the direct effects of the new elements can be ascertained. Here, the
biology and corresponding behaviour of the vector is scrutinised.
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It will be assumed that the basic underlying vector-borne dis-
ease model takes the form:

Hosts

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dSH

dt
= bHNH − dHSH + �HIH − �HSH

dEH

dt
= −dHEH − �HEH + �HSH

dIH
dt

= −(dH + DH)IH + �HEH − �HIH

Vectors

⎧⎪⎪⎪⎪⎪⎨
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dSV

dt
= bV NV − �V SV − dV SV

dEV

dt
= �V SV − �V EV − dV EV

dIV
dt

= �V EV − dV IV

(1.1)

where �i = ˛piIj/(NH + m) is the force of infection of species j on
species i (j /= i). This term is a standard “criss-cross” transmis-
sion term associated with purely disassortative mixing. It arises
through a vector biting at a rate ˛, picking a single host from all
other hosts (NH) and other animals (m) and the probability of trans-
mission from infected host/vector to susceptible vector/host being
successful (pV/pH). Other parameter notation is given in Table 1.

This susceptible-exposed-infected (SEI) host–vector model has
recovery (at a rate �H) for hosts, but not vectors and additionally
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Table  1
Parameters for the SEI Ross–Macdonald model (1.1).

Parameters and variables Description

bH Per capita host birth rate
dH Host death rate
�H Force of infection upon host
�H Host recovery rate
�H Inverse of host latent period
DH Disease-induced host death rate
pH Probability of host becoming infected from a

single infected bite

bV Per capita vector birth rate
dV Vector death rate
�V Force of infection upon vector
�V Inverse of vector latent period
˛  Average bite rate
pV Probability of vector becoming infected from a

single bite on an infected host

m Number of other animals available for blood
feeding (assuming no feeding preference
between hosts) or number of other animals
scaled by the vector’s relative preference of
these animals over the primary hosts (see Rock
et  al., in press for more details on vector
preference).

Table 2
New parameters for the age and bite-structured model (other parameters remain
the same as the standard ODE model (1.1).)

Parameters and
variables

Description Note

t Chronological time
�  Time since last bite (TSLB)
a  Age of vector Since biting maturity
˛(�) Per capita bite rate ˛(�) = ˇr(�)
ˇ Maximum per capita bite rate Constant
r(�) “Desire to bite” probability that

a  vector will take a blood-meal
if it finds a host

ı  Kronecker delta ı(x) =
{

1 if x = 0
0 otherwise

disease-induced mortality (DH) for hosts. Next a more complex
model is derived from (1.1), however the following methodology
could be applied to almost any ODE vector model.

2. Methodology

2.1. Age structure (vector senescence)

The age at which a vector becomes infectious affects the num-
ber of secondary infections that can result from this one individual.
If infection occurs near the start of the vector’s life, it will inflict
a higher number of bites (Styer et al., 2007; Bailey, 1982). This
notion is that on average the vector which is infected at a low
age will spend longer infectious than its counterpart which was
infected nearer to the end of its life; more bites occur (on average)
whilst it is infected and consequently it spreads disease more to
the host population. The relationship between vector survivorship
and its important effects on both vectorial capacity and the basic
reproductive ratio was first discussed by Macdonald in the 1950s
(Macdonald, 1956, 1952, 1961), however it was not until much later
that different type of distributions for vector mortality were used
rather than simply altering the fixed daily survivorship.

Traditional ODE models such as the Ross–Macdonald model,
make use of the simple Markovian formulation by assuming that
the (instantaneous) death rate is constant regardless of age; this
leads to exponentially distributed life expectancies. In some cases
this may  be a reasonable and/or justifiable assumption, however

more recent work on vectors such as the mosquito (Styer et al.,
2007; Bellan, 2010) and tsetse (Hargrove et al., 2011) indicate
that not modelling realistic death rates may  lead to inaccuracies
when estimating the transmission and prevalence of vector-borne
disease. This certainly warrants further investigation and is cited
as one of the most overlooked aspects of vector-borne disease
modelling; Styer et al. (2007) and Bellan (2010) emphasise the
importance of vector senescence as part of the modelling proce-
dure.

Others have also attempted to resolve this neglected insight into
vector-borne disease modelling by means of Lumped-Age Classes
whereby the vector population is partitioned into classes in which
parameters (in particular the death rate) are assumed to be constant
(Hancock and Godfray, 2007). This method is commonly found in
single population age-structured models; instead of modelling age-
ing by some rate of loss and gain between classes, the technique
utilises a delay differential equation (DDE) framework where indi-
viduals effectively spend fixed times in each stage. DDEs are general
more complex to work with than ODEs, particularly during numer-
ical simulation.

A natural way to introduce age structure within the vector pop-
ulation is via a partial differential equation (PDE) type model in a
similar manner to creating an age structure in single species disease
models (described by various authors Keeling and Rohani, 2008;
Murray, 2002; Britton, 2003), whereby a more realistic death rate
which is a function of age is chosen.

Imposing a PDE-type age structure on the SEI host–vector model
necessitates:

• Dependence of both chronological time and age for vectors (but
not for hosts, although hosts could be treated similarly):

SH(t), EH(t), IH(t), SV (a, t), EV (a, t), IV (a, t)

• Forced births for vectors (births must occur at age zero, a = 0):

bV ı(a)

• Age dependent deaths for vectors:

−dV (a)

• Inclusion of the ageing process for vectors:

−∂NV

∂a

• A new infection term within the host population (the infec-
tion term for the vector population remains unchanged and it
is assumed that infectiousness does not vary with age hence the
probability of transmission is independent of age):

�H = ˛pH
1

(NH + m)

∫ ∞

0

IV (u, t) du

2.2. Bite structure (vector feeding behaviour)

Age structure in vector-borne disease models is not in itself new,
although vector-borne age-structured models predominantly focus
on age in the host population rather than the vector (Geisse et al.,
2012; Hethcote and Thieme, 1985). However, not only is vector
ageing important but the feeding patterns of the vector also play a
vital role in disease transmission. After a vector has reached biting
maturity it will start to “desire” a blood-meal; as time passes the
vector becomes more and more likely to feed given the opportunity.
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