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a  b  s  t  r  a  c  t

The  efficacy  of  vaccines  is typically  estimated  prior to  implementation,  on  the  basis  of  random-
ized  controlled  trials.  This  does  not  preclude,  however,  subsequent  assessment  post-licensure,  while
mass-immunization  and  nonlinear  transmission  feedbacks  are  in  place.  In  this  paper  we  show  how
cross-sectional  prevalence  data  post-vaccination  can  be interpreted  in  terms  of  pathogen  transmis-
sion  processes  and  vaccine  parameters,  using  a dynamic  epidemiological  model.  We  advocate  the use  of
such frameworks  for model-based  vaccine  evaluation  in  the  field,  fitting trajectories  of cross-sectional
prevalence  of pathogen  strains  before  and  after  intervention.  Using  SI and  SIS  models,  we  illustrate  how
prevalence  ratios  in  vaccinated  and  non-vaccinated  hosts  depend  on true vaccine  efficacy,  the  absolute
and  relative  strength  of  competition  between  target  and  non-target  strains,  the time  post  follow-up,
and  transmission  intensity.  We  argue  that a mechanistic  approach  should  be  added  to vaccine  efficacy
estimation  against  multi-type  pathogens,  because  it naturally  accounts  for  inter-strain  competition  and
indirect  effects,  leading  to a robust  measure  of individual  protection  per  contact.  Our study  calls  for  sys-
tematic  attention  to epidemiological  feedbacks  when  interpreting  population  level  impact.  At  a  broader
level,  our  parameter  estimation  procedure  provides  a promising  proof  of  principle  for  a generalizable
framework  to infer vaccine  efficacy  post-licensure.

© 2015  The  Authors.  Published  by  Elsevier  B.V.  This  is  an  open  access  article  under  the  CC  BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Mathematical epidemiological models for the dynamics of
microparasite infections have a long history of development and
use in the design and optimization of intervention programmes
(Anderson et al., 1992). Yet, many challenges remain in applying
such models retrospectively to interpret and quantify interven-
tion effects in host–pathogen systems (Keeling, 2005; O’Hagan
et al., 2014; Wikramaratna et al., 2014; Goeyvaerts et al., 2015).
It is of public interest to quantify the relative effectiveness of
different control strategies, assess the ongoing changes in trans-
mission dynamics following such interventions, and optimize their
design through a cost–benefit analysis for the future. In this paper,
our focus is on vaccination as a transmission-reducing interven-
tion, and more specifically, in the context of endemic pathogens.
Although the amount of data available from epidemiological trials,
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cross-sectional and longitudinal surveys is vast and rapidly increas-
ing, our understanding and interpretation of such data on the
basis of transmission mechanisms and epidemiological feedbacks
is limited. This is apparent for many pathogen systems, includ-
ing Streptococcus pneumoniae bacteria, human papillomaviruses,
dengue, malaria, influenza and rotaviruses. Currently several vac-
cines are being used or contemplated to control these pathogens
around the world (Comanducci et al., 2002; Insinga et al., 2007; del
Angel and Reyes-del Valle, 2013; Sabchareon et al., 2012; Agnandji
et al., 2011; Black et al., 2000), and assessing their efficacy is
crucial.

Conceptual models can play a key role in this assessment, first by
clearly defining the measures of interest, secondly, by distinguish-
ing individual from population indicators, and thirdly, by enabling
us to anticipate future outcomes of vaccination programmes. An
important vaccine parameter is efficacy against pathogen acquisi-
tion, defined as reduction in the probability of infection per contact
of each vaccinated individual (Haber et al., 1991). Before a vaccine
is introduced, vaccine efficacy estimation is typically performed
through randomized controlled trials, involving a subset of a given
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population (Halloran et al., 2010). Such vaccine evaluation studies
use 1 − RR (1 minus risk ratio), as a measure of efficacy, where RR is
some estimate of relative risk in vaccinated vs. non-vaccinated indi-
viduals. This tends to ignore indirect effects (Halloran et al., 1991),
such as the changes in transmission mediated by the intervention,
which while in the time and coverage of trials are indeed expected
to be negligible, are not quite negligible when mass-immunization
is in place (Shim and Galvani, 2012).

The assessment of vaccines post-licensure is also of interest, and
here is where dynamic mathematical models can be useful, along-
side statistical approaches (Biondi and Weiss, 2015; Crowe et al.,
2014; Andrews et al., 2014). There are several reasons for why  such
a-posteriori assessment is important. First, only a dynamic model
can properly link pre-licensure vaccine expectations and observed
outcomes in a population undergoing immunization, thereby pro-
viding a validity test for the numerical estimates of vaccine efficacy
obtained from trials, and a validity test for the public-health pro-
jections made a priori regarding effectiveness, or population level
impact. Second, only a dynamic model can take into account in a
mechanistic manner the time since the onset of the vaccination
programme, regardless of equilibrium requirements (Rinta-Kokko
et al., 2009), and consider the actual vaccine coverage in a given
setting. Third, in the context of multi-strain pathogens, where mul-
tivalent vaccines target a subset of pathogen types, only a dynamic
model can properly implement the nonlinear interactions between
pathogen types (Lipsitch, 1997; Martcheva et al., 2008), arising
through direct competition, cross-immunity or asymmetric vaccine
protection.

Although there has been recognition of the importance of
dynamic transmission models for vaccine assessment (Shim and
Galvani, 2012), few studies so far have attempted to infer vaccine
efficacy fitting dynamic models to temporal prevalence trajecto-
ries post-vaccination (Choi et al., 2011; Gjini et al., 2016). Other
approaches have suggested that prevalence odds ratios may  be
more suitable than prevalence ratios to determine vaccine efficacy,
and that special attention must be given to the time of sampling
post-vaccination (Scott et al., 2014). Another study by Omori et al.
(2012) has used dynamic models (SIS and SIR) to illustrate the
bias in odds-ratio estimators of vaccine efficacy for two  compet-
ing pathogen types, but their estimation was based on prevalences
at endemic steady state only, posing a strong restriction on the
method. A recent study by van Boven et al. (2013) deals with
vaccine efficacy estimation in an epidemic scenario, and applies
a dynamic modelling framework to mumps  outbreak data in the
Netherlands.

Here, we advocate a similar dynamic spirit in the context
of endemic diseases. We  propose a novel approach to vaccine
efficacy estimation using cross-sectional prevalence data inte-
grated within dynamic mathematical models. This enables a deeper
understanding of vaccine performance in the field, as mediated by
transmission intensity, competition between pathogen subtypes
and host factors. When vaccine coverage is high, the transmis-
sion cycle encompasses vaccinated and non-vaccinated individuals
interacting through contact, thus affecting and being subject to
a dynamic force of infection. With a gradually diminishing expo-
sure to vaccine types, in polymorphic systems, subtype relative
frequencies can change in the population from the combined effects
of vaccination and interactions between target and non-target
pathogen types. If a vaccine induces a replacement phenomenon,
as it has been argued for pneumococcus (Weinberger et al., 2011)
and HPV (Biondi and Weiss, 2015), vaccine efficacy against targeted
pathogen strains, can be estimated while these strains are still in
circulation, namely while type replacement is not yet complete,
and sufficient information can be extracted. It is precisely in this
intermediate dynamic phase that most vaccine observational stud-
ies are conducted, and where epidemiological feedbacks, including

changes in exposure and interaction between multiple strains, are
most likely to play a role.

To correctly capture all these processes, more refined math-
ematical frameworks are needed. This requires going beyond
direct statistical comparisons, based on static data, e.g. snap-
shot prevalence odds ratios from observational studies (Thompson
et al., 1998), or the indirect cohort method for case–control data
(Andrews et al., 2011), which neglects pathogen subtype interfer-
ence altogether. Even more importantly, the cohort method fails
to acknowledge that the probability of infection of an individual
depends on the infection prevalence in the population, i.e. on the
infection status of others.

With a dynamic modelling approach, instead, the problem of
constant hazard ratios (Hernán, 2010) can be circumvented, as can
limitations of the indirect cohort method (Moberley and Andrews,
2014) for purposes of vaccine efficacy estimation. Furthermore,
data can be interpreted relaxing the stationarity requirement and
accounting for pathogen type replacement. Other statistical esti-
mation methods such as incidence density sampling (Richardson,
2004), might also not require the assumption of stationarity, but
they do not deal with competition in multi-strain pathogen sys-
tems.

The definition of vaccine efficacy that we consider in this paper
has a clear biological meaning: reduction of the probability of
pathogen acquisition per contact, which enables extrapolation
beyond a single study population. This contrasts classical estimates
of vaccine efficacy that are based on comparing attack rates in vac-
cinated and unvaccinated individuals (the cohort method), or those
that use the vaccination status of the infected individuals relative to
the population vaccination coverage (the screening method). Such
vaccine efficacy indicators lack a clear biological meaning, which
makes interpretation problematic, and prevents anticipation of the
critical vaccination coverages needed to reach certain desired out-
comes.

In this study, we argue that temporal effects of vaccination pro-
grammes can be addressed through dynamic mathematical models,
where parameters of efficacy are explicitly defined in terms of
underlying transmission mechanisms, and where epidemiologi-
cal feedbacks among immunized and non-immunized individuals,
and between pathogen strains are correctly accounted for. In the
interest of simplicity and clarity, we  only consider minimal epi-
demiological models to illustrate vaccine effects on single and
multiple infection with different pathogen types, but the uncovered
trends should apply in similar vein to more complex vaccination
scenarios (Halloran et al., 1991, 2010). We  delineate a proof-
of-concept inference procedure, based on ODE model fitting, to
cross-sectional data collected over different time points after vac-
cine implementation.

2. Materials and methods

To build intuition in our reader, initially we present susceptible-
infected (SI) model frameworks accounting for one and two
pathogen types, while the susceptible-infected-recovered (SIR)
analogues are elaborated in the Supplementary Text S2. Then
we proceed to susceptible-infected-susceptible (SIS) models with
many-type pathogens, grouped according to whether they are tar-
geted by a polyvalent vaccine or not. We  always assume that the
vaccine is effective against type 1 pathogen (SI/SIR models), or
against pathogen subtypes in group 1 (SIS setting). The mode of
action of the vaccine we consider is leaky (Halloran et al., 1991),
and the vaccine efficacy is defined as the reduction in probabil-
ity of infection/pathogen acquisition per contact. Notice that in
this paper, we will use the terms ‘infection’ and ‘carriage’ inter-
changeably. As the source of prevalence data, we  consider active
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