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a  b  s  t  r  a  c  t

The  underlying  structure  of  epidemiological  models,  and  the  questions  that  models  can  be used  to  address,
do  not  necessarily  depend  on  the host  organism  in  question.  This  means  that  certain  preoccupations  of
plant disease  modellers  are  similar  to  those  of  modellers  of  diseases  in  human,  livestock  and  wild  animal
populations.  However,  a number  of aspects  of plant  epidemiology  are  very  distinctive,  and  this  leads  to
specific  challenges  in  modelling  plant  diseases,  which  in  turn  sets  a certain  agenda  for  modellers.  Here
we  outline  a selection  of  13  challenges,  specific  to plant  disease  epidemiology,  that  we  feel  are  important
targets  for  future  work.

©  2014  The  Authors.  Published  by  Elsevier  B.V. This  is  an  open  access  article  under  the  CC  BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Introduction

Certain of the issues that are important in modelling diseases of
humans, livestock and wild animals are equally important to plant
disease epidemiology. Generic questions surround the effects of
population structure and stochasticity upon epidemic dynamics,
and how models can be parameterised from data that are all too
often limited. The extent to which different aspects of the com-
plex biology underlying spread need to be captured in models can
be unclear, and this ambiguity in what must be represented natu-
rally leads to a focus on model parsimony. Methods to propagate
uncertainties in model structure and/or parameter values to uncer-
tainty in model prediction are also required, irrespective of whether
the pathogen has a plant, human or agricultural or wild animal
host.

Nevertheless, many aspects of plant disease epidemiology set
a distinctive agenda for plant disease modellers. Most obvious
is that, in the absence of human-mediated movement, individ-
ual plants are sessile, although there are complex heterogeneities
in the availability of hosts for infection in both space and
time. Equally characteristic, however, are infection rates that are
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strongly controlled by environmental conditions, and disease that
is frequently cryptic (i.e. undetectable) and/or poorly reported (par-
ticularly in natural environments). Extensive prophylactic control,
interactions among multiple hosts and/or pathogens, and complex
pathogen life cycles must also feature prominently in any mean-
ingful discussion of plant epidemiology.

Here we  outline a selection of 13 challenges that are specific
to plant disease, and that we feel are particularly important. We
particularly focus on challenges relating to disease prediction and
disease control using epidemiological models. These challenges can
be partitioned into those relating to modelling the plant host(s)
(Challenges 1–4), modelling the pathogen(s) (Challenges 5–9) and
modelling control (Challenges 10–13). We  have necessarily been
selective in the challenges we identify, constrained by a tight word
limit and a fixed quota of references. Giving a broad overview of the
challenges faced by modellers of plant disease within the constraints
of a single article has itself been a significant challenge.

1. Linking epidemiological models to crop yield and ecosys-
tem services

Crop pathogens are important primarily because they cause loss
of yield. However, models concentrating on yield (e.g. Madden et al.,
2000a) typically only include very simple epidemiology, e.g. logistic
growth of epidemics. Models should incorporate sufficient epidemio-
logical realism in order to analyse and predict the effects of disease and
host dynamics on yield. An attractive metric to capture transients in
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the outputs of compartmental models was proposed by Hall et al.
(2007),

Yield =
∫ Tmax

t=0

ω(t)S(t), (1)

where S(t) is healthy tissue, Tmax season length and ω(t) a weighting
function. However to be useful in practice this would require real-
istic dynamics for host growth, and appropriate definition of ω(t) to
account for the effects of the timing of loss of healthy tissue relative
to grain filling or fruit production. The central role of within-host
severity in yield indicates individual plants may  need to be dis-
tinguished in the epidemic model to allow for variation in severity
between hosts, with a more careful treatment of autoinfection than
is typical. Ideally models would also account for compensation via
reduced competition from diseased plants on remaining healthy
individuals, and for the effects of pathogens on the full range of
ecosystem services (Boyd et al., 2013). Recent high-profile introduc-
tions of invasive forest pathogens underline the need for models that
incorporate and quantify impacts of ecosystem services.

2. Temporal changes in host availability, from plant organs
to populations

Amounts of susceptible tissue can vary over orders of magni-
tude within a single season. It is therefore surprising that changes
in the number or density of hosts are most often ignored. When host
population sizes do vary in models, this is typically via a simplistic
caricature. On longer timescales, perturbations due to harvesting
for crops or seasonal defoliation in perennial hosts are rarely con-
sidered. The default assumption of constant population size should
be replaced: models should more routinely include realistic within-
season host dynamics and synchronous removal at the end of each
season. Within-season dynamics are required for a proper treat-
ment of yield, and to explain paradoxical reductions in severity
when host growth out-paces that of the pathogen. Host growth
can also make populations more invasible by reducing distances
between individuals, particularly for soil-borne pathogens, a phe-
nomenon accentuated by disease-induced growth. Madden et al.
(2002) showed how to define invasion thresholds over multiple
seasons using semi-discrete models. Models capturing long-term
behaviour by tracking pathogens over multiple growing seasons in
both annual and perennial hosts should be extended, particularly to
include a more detailed treatment of host growth and recruitment,
overwintering and alternate hosts.

3. Capturing host spatial structure, even when data are
limited

Plants are sessile, and this means the spatial structure of host
populations is of paramount importance. However host location
data is expensive to collect and often incomplete. Proxies including
maps tracking groups of species or results of environmentally-
driven species distribution models (e.g. maximum entropy) are
often all that are available. The key challenges are to assess the impact
of incomplete or inaccurate host data on the predictive accuracy of
models, and to develop methods to account for the additional uncer-
tainty to which this leads. Loss of small-scale spatial detail often
creates artificially-extended regions in which the host may  erro-
neously be assumed to be contiguous; the potential bias of this in
overstating spread remains unclear.

Including spatial dynamics reveals the role of asynchrony
and dispersal among populations in influencing both host and
pathogen polymorphism and rates of evolutionary change (Thrall
and Burdon, 2002). Representing the continuum of connectivity
from large continuous populations to small separate populations
will allow more explicit predictions regarding the influence of frag-
mentation on host and pathogen evolution (Carlsson Granér and
Thrall, 2002). Focusing on patch size also mimics historical inter-
est in how fields can be arranged to give landscapes resilience to

pathogens (van der Plank, 1948). An attractive analytic approach
would involve adapting the work of DeWoody et al. (2005) by
including crop rotation and overwintering in a spatially-structured
metapopulation-type model of the agricultural mosaic. We  require
metrics to quantify how the invasibility of landscapes is conditioned on
the interplay between spatial structure and pathogen dispersal, partic-
ularly to allow limited control resources to be allocated, and to assess
potential evolutionary implications.

4. Beyond a single species: multiple and alternate hosts,
spillover and community ecology

Many plant pathogens can infect multiple host species, and
some require more than one host species to complete their life
cycle. Although crop mixtures are well studied (Mundt, 2002),
the area of multiple hosts has been neglected. Recent theoretical
advances (e.g. type reproduction numbers to identify host species
with most significant effects on spread (Heesterbeck and Roberts,
2007)) have not yet been applied. The challenge is to validate sim-
plifications including host indices or functional traits to capture host
heterogeneity while avoiding parameter explosion. This will help us
to understand control, and allow impacts on ecosystem function
and species coexistence to be quantified.

For multi-host pathogens, asymmetries in transmission, sea-
sonal refuges, and relative densities of hosts are all critical,
particularly when there is transmission between natural and
domesticated hosts (Borer et al., 2009). Host heterogeneity is likely
to influence the evolution of multi-host pathogen virulence, exacer-
bating apparent competition (Betancourt et al., 2013), and affecting
whether generalist or specialist pathogens are favoured (Gudelj
et al., 2004). Pathogen introductions, particularly to threatened
tree species, mean it is urgent to understand spillover, in which
epidemics in a host population of interest are driven not by trans-
mission within that species, but by transmission from a different
host (Power and Mitchell, 2004). Spillover can also drive the spread
of invasive species (Flory and Clay, 2013), particularly when the
invader is less affected by the pathogens it carries. Models exploring
how dynamics on pathogens’ hosts in their natural range translate into
an exotic range are clearly required.

5. Realistic dispersal models, including meteorological and
anthropomorphic drivers

Landscape-scale models often link locations via a dispersal
kernel (e.g. Meentemeyer et al., 2011). The major attraction is par-
simony: a simple function controls how transmission probabilities
decay with distance. However, this is clearly a significant simplifi-
cation. We  need to understand how non-isotropic, time and space
varying kernels impact on epidemic dynamics.

Including more realism in kernels would require sub-models
of processes underlying heterogeneities in dispersal. A number
of transmission routes are important, including wind-borne long-
distance spore transport, rivers, trade networks, shared machinery
and other anthropomorphic pathways. Of these, trade networks
are increasingly well-studied (see Challenge 6, below), and long
distance wind-borne dispersal has received significant attention,
both via phenomenological models (e.g. Aylor, 2003) and more
detailed models taking account of meteorological data (e.g. Isard
et al., 2005). The challenge is matching the complexity of dispersal to
the purpose of the model and, crucially, to the quality of data available
for parameterisation. While a more detailed treatment of dispersal
is attractive, this can only be meaningful if given statistical support
via fitting, for which available data are typically rather sparse.

6. Network models for human-mediated spread
Driven by an increasing acknowledgment of the role of the plant

trade in spreading disease (Brasier, 2008), there has been an inter-
est in the use of network models to characterise the movement of
inoculum by trade and transportation networks (Jeger et al., 2007).
Understanding the spread of disease in these networks could help
to identify network characteristics that exacerbate spread and also
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