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a  b  s  t  r  a  c  t

Deterministic  models  have  a long  history  of  being  applied  to  the  study  of  infectious  disease  epidemiol-
ogy.  We  highlight  and  discuss  nine  challenges  in this  area.  The  first two  concern  the  endemic  equilibrium
and  its  stability.  We  indicate  the need  for  models  that  describe  multi-strain  infections,  infections  with
time-varying  infectivity,  and those  where  superinfection  is  possible.  We  then  consider  the  need  for
advances  in  spatial  epidemic  models,  and  draw attention  to  the  lack  of  models  that  explore  the rela-
tionship  between  communicable  and non-communicable  diseases.  The  final  two  challenges  concern  the
uses  and  limitations  of  deterministic  models  as  approximations  to  stochastic  systems.

©  2014  The  Authors.  Published  by  Elsevier  B.V.  This  is  an  open  access  article  under  the  CC  BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Introduction

Deterministic models have a long history of being applied to the
study of infectious disease epidemiology. Many earlier studies were
confined to establishing criteria for the stability of the infection-
free steady state and existence of an endemic steady state, perhaps
in simple cases with explicit expressions for the proportion sus-
ceptible, prevalence of infection and herd immunity. Studies of the
endemic state involve demographic processes that occur at a dif-
ferent (and longer) time scale, as well as epidemiological processes.
Important concepts for structured populations such as vaccine-
induced age-shift and core groups are fundamental insights that
arise from this analysis, so even though disease transmission is
in principle a discrete stochastic process, deterministic modelling
offers a fruitful avenue to study problems of endemicity. This gives
rise to our first two challenges.

The transmission dynamics of genetically varying pathogens
have received considerable interest in recent years, driven by
advances in molecular biology, the impact of multivalent vac-
cines and the emergence of drug-resistance. Important challenges
remain with regard to the multi-strain models that arise. These are
addressed as Challenge 3. In developing multi-scale models that
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link within- and between-host dynamics, for example to study the
long-term evolution of pathogens, one often faces the problem of
how to model superinfection. These are addressed as Challenges 4
and 5.

Spatially explicit models are usually treated in a stochastic
framework, although this was not always the case (Anderson and
May, 1991; Diekmann et al., 2013). Diffusion models have been
proposed that give rise to travelling epidemic waves through a
homogeneous population. However, in reality contacts between
individuals are different due to a variety of factors, and not just spa-
tially determined, hence a heterogeneous description is required.
Taking account of this is Challenge 6.

It is well-known that non-communicable diseases (NCDs) such
as asthma, some cancers and cardio-vascular diseases have risk fac-
tors in common with infectious diseases: the predominant ones are
low socio-economic status, poor nutrition and poor housing. While
changes in these factors could lead to changes in infectious dis-
eases and NCDs, there has been relatively little investigation of the
interaction between them. This presents Challenge 7.

Deterministic models are generally regarded as simpler to han-
dle than stochastic models. Hence, they are often the first tool tried
when a new problem presents itself (Diekmann et al., 2013). Their
limitations are frequently alluded to, but often ignored. Challenge
8 is to define these limitations. Many infectious disease systems are
fundamentally individual-based stochastic processes, and are more
naturally described by stochastic models. Analysis of an equivalent
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(in some sense) deterministic model may  then yield information
about the solution of the stochastic system. Our final challenge is to
understand the relationship between so-called equivalent stochas-
tic and deterministic representations of the same system.

1. Understanding the endemic equilibrium

The endemic equilibrium arises as a balance between transmis-
sion of infection and replenishment of the susceptible pool, either
through loss of immunity or demographic turnover. The math-
ematical starting point for the characterization of the endemic
equilibrium is typically a renewal equation which, under suit-
able assumptions about separability of the mixing function, may
be expressed in terms of a scalar equation in the force of infec-
tion. Introducing the effective reproduction number Reff as the
number of new infections that a typical infectious individual
produces, one may  interpret the endemic equilibrium as the con-
dition Reff = 1 (Diekmann et al., 2013). It would be interesting to
determine the underlying structure of this equation, in particular
for the non-separable case, which would address the implications
of empirically observed mixing patterns such as those reported in
Mossong et al. (2008).

For endemic infections, parameter estimation is naturally based
on information about the endemic equilibrium. In simple settings
one may  determine R0, for example, from the observed average
age at infection or from the fraction of the population that remains
susceptible. Thus the estimation of R0 is indirect in the sense that
it relies heavily on our understanding of the endemic equilibrium.
It is striking that where R0 is estimated in this way (e.g. for child-
hood diseases, see Table 4.1 in Anderson and May, 1991), the values
obtained are typically higher than those for diseases where R0 is
determined from directly studying the onset of the epidemic (e.g.
influenza, SARS or HIV).

While host renewal through demographic processes is fairly
well understood, the renewal process associated with waning
immunity is considerably less clear although there are applica-
tions to important diseases such as pertussis (Rohani et al., 2010)
and malaria (Bailey, 1982). There is a need to study this process,
both in terms of the underlying biology and in terms of its dynamic
consequences (Breda et al., 2012).

It is known that regular periodic epidemics of childhood dis-
eases depend on the seasonality of the transmission coefficient in
combination with the population birth process. Oscillations around
the endemic equilibrium are observed for a wide range of infec-
tious diseases (Grassly and Fraser, 2006), but several aspects of this
process are not well understood. It is clear that the variation in
transmissibility (for example due to school holidays) affects the
qualitative pattern of epidemics, in a way that could (at least in
principle) be studied by Floquet theory. However, we  do not have
a comprehensive theory for the interaction, or an understanding
of whether stochastic variation in the troughs between epidemics
may  be neglected (Billings and Schwartz, 2002, see also Challenge
9), or knowledge of how these patterns relate to so-called skipping
dynamics (Stone et al., 2007). A challenge is to examine the renewal
equation, and develop a deeper understanding of the relationship
between Reff and R0 that might clarify these issues.

2. Defining the stability of the endemic equilibrium

Although it is usually straightforward to determine the small
amplitude linear perturbations about the equilibrium and derive
the associated characteristic equation, this equation is typically too
complex to provide general stability results. For example, it remains
an open question under which conditions the internal equilibrium
of the age-structured SIR model with demographic turn-over is

stable, and studies have shown that stability as well as instabil-
ity (through a Hopf bifurcation) may  occur for specific conditions
(Andreasen, 1993). Singular perturbations utilising the multiple
time scales that are inherent in endemic models may offer an alter-
native approach. Consider an SIR model where time is measured
in units of host life-span, and the sizes of each epidemic compart-
ment are measured as fractions of the total population size. The
underlying dynamics follow
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where � � 1 denotes the ratio of the infectious period to the host
life-span, the transmission coefficient  ̌ = R0 (1 + �) ∼1 and the
birth rate B ∼ 1. One would then look for a fast time scale of the
epidemic, where I ∼ 1, and a slow time scale of the demographics,
where I ∼ �. For the disease-free state this is possible (see for exam-
ple Owuor et al., 2013), but it is not clear how a similar separation
would work for the endemic state. In particular, the linear anal-
ysis suggests that there may  in addition be an intermediate time
scale of order

√
�. To be useful, one would then have to extend the

analysis to structured populations. Finding a general paradigm for
the stability of the endemic equilibrium remains a challenge for
theoreticians.

3. Modelling multi-strain systems

The nature of diversity is as poorly understood in epidemiology
as in many other branches of population biology. We  have only two
general models available: the quasi-species model of mutation-
selection balance and the competitive exclusion principle. Most
models of strain dynamics may  be seen as special cases of these two
basic models, with the complication that competition can either be
directly between strains within the host (as may  be the case for bac-
terial colonization), or indirect competition for a shared resource
(as may  be the case for immunizing pathogens, the resource being
susceptible hosts). Super-infection and cross-immunity are special
cases of these two  modes of interaction that have received some
attention (see Challenges 5 and 6), but we  need to understand bet-
ter the nature of the niches that arise due to the dynamical aspects
of transmission. Examples are the pathogen strains with superior
survival during troughs of low disease activity (Gog et al., 2003), and
the mechanisms by which long term host immunity may interact
with strain dynamics (Kucharski and Gog, 2012). As the number of
co-existing species is limited by the number of shared resources,
these models will in general only allow for a restricted diversity.
The challenge is to extend epidemic models of strain dynamics to
allow for greater diversity, as suggested by Lipsitch et al. (2009) for
the case of bacterial colonization.

4. Modelling time-varying infectivity

The majority of deterministic models, and especially those used
for applications in veterinary and public health, are compart-
mental models. These involve constant transition rates between
compartments, and hence sojourn times that are exponentially
distributed (or Erlang distributed in the case of multiple identical
sequential compartments). The advantage of these models is that
one can use ordinary differential equations and, without special-
ist knowledge, can benefit from the theory of dynamical systems
and well-developed and readily available numerical methods. The
disadvantage is that their imposed structure leads to a lack of
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